
Bachelor Thesis
The Nut Shell – A Framework for Creating Interactive Command Line Tutorials

Sebastian Morr
2013–11–27

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface

But: Steep learning curve
Common teaching approach: Static text. Inflexible!
This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!

Sebastian Morr | The Nut Shell | 2

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface
But: Steep learning curve

Common teaching approach: Static text. Inflexible!
This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!

Sebastian Morr | The Nut Shell | 2

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface
But: Steep learning curve
Common teaching approach: Static text. Inflexible!

This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!

Sebastian Morr | The Nut Shell | 2

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface
But: Steep learning curve
Common teaching approach: Static text. Inflexible!
This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!

Sebastian Morr | The Nut Shell | 2

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface
But: Steep learning curve
Common teaching approach: Static text. Inflexible!
This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!

Sebastian Morr | The Nut Shell | 2

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface
But: Steep learning curve
Common teaching approach: Static text. Inflexible!
This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!

Sebastian Morr | The Nut Shell | 2

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$

cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen

$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$

ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls

elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$

mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$

ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls

elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$

man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

Sebastian Morr | The Nut Shell | 3

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session (cont.)

$

ls -l elephant
-rw------- 1 seb users 10485760 27. Okt 22:25 elephant

Okay, about ten million bytes. ls has the option -sh to display
that in a more comprehensible order of magnitude.

$ ls -sh
10M elephant

10 megabytes? Indeed, the fridge isn’t that large. We have to
make the elephant smaller.

Sebastian Morr | The Nut Shell | 4

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session (cont.)

$ ls -l elephant

-rw------- 1 seb users 10485760 27. Okt 22:25 elephant

Okay, about ten million bytes. ls has the option -sh to display
that in a more comprehensible order of magnitude.

$ ls -sh
10M elephant

10 megabytes? Indeed, the fridge isn’t that large. We have to
make the elephant smaller.

Sebastian Morr | The Nut Shell | 4

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session (cont.)

$ ls -l elephant
-rw------- 1 seb users 10485760 27. Okt 22:25 elephant

Okay, about ten million bytes. ls has the option -sh to display
that in a more comprehensible order of magnitude.

$

ls -sh
10M elephant

10 megabytes? Indeed, the fridge isn’t that large. We have to
make the elephant smaller.

Sebastian Morr | The Nut Shell | 4

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session (cont.)

$ ls -l elephant
-rw------- 1 seb users 10485760 27. Okt 22:25 elephant

Okay, about ten million bytes. ls has the option -sh to display
that in a more comprehensible order of magnitude.

$ ls -sh

10M elephant

10 megabytes? Indeed, the fridge isn’t that large. We have to
make the elephant smaller.

Sebastian Morr | The Nut Shell | 4

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session (cont.)

$ ls -l elephant
-rw------- 1 seb users 10485760 27. Okt 22:25 elephant

Okay, about ten million bytes. ls has the option -sh to display
that in a more comprehensible order of magnitude.

$ ls -sh
10M elephant

10 megabytes? Indeed, the fridge isn’t that large. We have to
make the elephant smaller.

Sebastian Morr | The Nut Shell | 4

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Overview

Goal
Design, implementation, application and evaluation of a framework that
allows the creation of command line tutorials with this interactive
teaching approach: The Nut Shell.

Outline

1. Construct abstraction layer for uniform access to arbitrary CLIs
2. Introduce new language to describe tutorial lessons
3. Comparative evaluation with about 120 participants

Sebastian Morr | The Nut Shell | 5

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Overview

Goal
Design, implementation, application and evaluation of a framework that
allows the creation of command line tutorials with this interactive
teaching approach: The Nut Shell.

Outline

1. Construct abstraction layer for uniform access to arbitrary CLIs
2. Introduce new language to describe tutorial lessons
3. Comparative evaluation with about 120 participants

Sebastian Morr | The Nut Shell | 5

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Overview

Goal
Design, implementation, application and evaluation of a framework that
allows the creation of command line tutorials with this interactive
teaching approach: The Nut Shell.

Outline

1. Construct abstraction layer for uniform access to arbitrary CLIs

2. Introduce new language to describe tutorial lessons
3. Comparative evaluation with about 120 participants

Sebastian Morr | The Nut Shell | 5

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Overview

Goal
Design, implementation, application and evaluation of a framework that
allows the creation of command line tutorials with this interactive
teaching approach: The Nut Shell.

Outline

1. Construct abstraction layer for uniform access to arbitrary CLIs
2. Introduce new language to describe tutorial lessons

3. Comparative evaluation with about 120 participants

Sebastian Morr | The Nut Shell | 5

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Overview

Goal
Design, implementation, application and evaluation of a framework that
allows the creation of command line tutorials with this interactive
teaching approach: The Nut Shell.

Outline

1. Construct abstraction layer for uniform access to arbitrary CLIs
2. Introduce new language to describe tutorial lessons
3. Comparative evaluation with about 120 participants

Sebastian Morr | The Nut Shell | 5

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Outline

Introduction

The CLI Abstraction Layer

The nutsh Language

Application and Evaluation

Sebastian Morr | The Nut Shell | 6

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs

Recognize parts of the command line interaction:

1. Prompt
2. Command
3. Output

Keep all editing features intact
Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs
Recognize parts of the command line interaction:

1. Prompt
2. Command
3. Output

Keep all editing features intact
Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs
Recognize parts of the command line interaction:
1. Prompt

2. Command
3. Output

Keep all editing features intact
Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs
Recognize parts of the command line interaction:
1. Prompt
2. Command

3. Output

Keep all editing features intact
Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs
Recognize parts of the command line interaction:
1. Prompt
2. Command
3. Output

Keep all editing features intact
Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs
Recognize parts of the command line interaction:
1. Prompt
2. Command
3. Output

Keep all editing features intact

Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs
Recognize parts of the command line interaction:
1. Prompt
2. Command
3. Output

Keep all editing features intact
Maintain the CLI’s state

Sebastian Morr | The Nut Shell | 7

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens

Sebastian Morr | The Nut Shell | 8

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.

2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line

Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer

Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:
System shells: Bash, tcsh, zsh, . . .

REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:
System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)

SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:
System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles

Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:
System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . .)
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)

Sebastian Morr | The Nut Shell | 9

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Approach

Use special markers for annotation

Suitable choice: Unicode code points from the Private Use Area
(U+E000 – U+F8FF)

Insert into prompt, do not display
inputFilter: Wait for line feed, send sequence to repeat command
between markers

Sebastian Morr | The Nut Shell | 10

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Approach

Use special markers for annotation
Suitable choice: Unicode code points from the Private Use Area
(U+E000 – U+F8FF)

Insert into prompt, do not display
inputFilter: Wait for line feed, send sequence to repeat command
between markers

Sebastian Morr | The Nut Shell | 10

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Approach

Use special markers for annotation
Suitable choice: Unicode code points from the Private Use Area
(U+E000 – U+F8FF)

Insert into prompt, do not display

inputFilter: Wait for line feed, send sequence to repeat command
between markers

Sebastian Morr | The Nut Shell | 10

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Approach

Use special markers for annotation
Suitable choice: Unicode code points from the Private Use Area
(U+E000 – U+F8FF)

Insert into prompt, do not display
inputFilter: Wait for line feed, send sequence to repeat command
between markers

Sebastian Morr | The Nut Shell | 10

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream

Two Operations:

1. Prompt the user for a command

Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command

Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command

Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal

Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command

Store Output token as the command’s output
2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI
Send command directly to Input Filter

Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI
Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Outline

Introduction

The CLI Abstraction Layer

The nutsh Language

Application and Evaluation

Sebastian Morr | The Nut Shell | 12

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Design goals

As easy to read and write as possible

Syntax resembles C and Go
Use regular expressions

Keep language as small as possible, but powerful enough
Syntactic support for often-used semantical constellations

Sebastian Morr | The Nut Shell | 13

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Design goals

As easy to read and write as possible
Syntax resembles C and Go

Use regular expressions

Keep language as small as possible, but powerful enough
Syntactic support for often-used semantical constellations

Sebastian Morr | The Nut Shell | 13

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Design goals

As easy to read and write as possible
Syntax resembles C and Go
Use regular expressions

Keep language as small as possible, but powerful enough
Syntactic support for often-used semantical constellations

Sebastian Morr | The Nut Shell | 13

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Design goals

As easy to read and write as possible
Syntax resembles C and Go
Use regular expressions

Keep language as small as possible, but powerful enough

Syntactic support for often-used semantical constellations

Sebastian Morr | The Nut Shell | 13

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Design goals

As easy to read and write as possible
Syntax resembles C and Go
Use regular expressions

Keep language as small as possible, but powerful enough
Syntactic support for often-used semantical constellations

Sebastian Morr | The Nut Shell | 13

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Lexical elements

As usual:

Comments
White space
Identifiers
Keywords: break, def, else, if, prompt, return
Operators, delimiters
String literals

Sebastian Morr | The Nut Shell | 14

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

String Expressions

Concatenation: "foo"+"foo"

Check for equality: "foo"+"foo" == "foofoo"

Check for (exact) regex match: "foo" =~ "f[aio]."

Empty string has truth value false, others true
Boolean operators: !, &&, and || as usual

Sebastian Morr | The Nut Shell | 15

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

String Expressions

Concatenation: "foo"+"foo"
Check for equality: "foo"+"foo" == "foofoo"

Check for (exact) regex match: "foo" =~ "f[aio]."

Empty string has truth value false, others true
Boolean operators: !, &&, and || as usual

Sebastian Morr | The Nut Shell | 15

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

String Expressions

Concatenation: "foo"+"foo"
Check for equality: "foo"+"foo" == "foofoo"

Check for (exact) regex match: "foo" =~ "f[aio]."

Empty string has truth value false, others true
Boolean operators: !, &&, and || as usual

Sebastian Morr | The Nut Shell | 15

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

String Expressions

Concatenation: "foo"+"foo"
Check for equality: "foo"+"foo" == "foofoo"

Check for (exact) regex match: "foo" =~ "f[aio]."

Empty string has truth value false, others true

Boolean operators: !, &&, and || as usual

Sebastian Morr | The Nut Shell | 15

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

String Expressions

Concatenation: "foo"+"foo"
Check for equality: "foo"+"foo" == "foofoo"

Check for (exact) regex match: "foo" =~ "f[aio]."

Empty string has truth value false, others true
Boolean operators: !, &&, and || as usual

Sebastian Morr | The Nut Shell | 15

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Built-in functions

say: Output explanation text (indented, colored)

say("This is explaining text.")

"This is the short form."

run: Execute hidden command, return output

run("1+1")

Sebastian Morr | The Nut Shell | 16

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Built-in functions

say: Output explanation text (indented, colored)

say("This is explaining text.")

"This is the short form."

run: Execute hidden command, return output

run("1+1")

Sebastian Morr | The Nut Shell | 16

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

If statements

if "test" == "test" {
"Everything is OK."

} else {
"Wait, what?"

}

Sebastian Morr | The Nut Shell | 17

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Prompt statements

"Please calculate the product of 6 and 7."
prompt {

if output == "42" {
break

} else {
"Please try again."

}
}
"Well done!"

Infinite loop, prompt user for command before each pass.
Define command and output functions

Sebastian Morr | The Nut Shell | 18

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Function definitions

Only at top level, avoid name masking!

def say_twice(text) {
say(text)
say(text)

}

say_twice("Hey!")

Sebastian Morr | The Nut Shell | 19

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Nesting statements

Use case: Check same conditions for group of prompt statements.

def respond_to_help {
if command =~ "help" {

"Sorry, you’re on your own."
}

}

respond_to_help {
prompt { /* ... */ }
prompt { /* ... */ }

}

Sebastian Morr | The Nut Shell | 20

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Nesting statements

Use case: Check same conditions for group of prompt statements.

def respond_to_help {
if command =~ "help" {

"Sorry, you’re on your own."
}

}

respond_to_help {
prompt { /* ... */ }
prompt { /* ... */ }

}

Sebastian Morr | The Nut Shell | 20

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Parsing

nutsh has LR(1) grammar: Can be parsed by a bottom-up parser
with lookahead 1 reading from left to right in a single pass, creating a
rightmost derivation

Framework uses a standard parser generator, YACC
Parser creates a syntax tree

Sebastian Morr | The Nut Shell | 21

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Parsing

nutsh has LR(1) grammar: Can be parsed by a bottom-up parser
with lookahead 1 reading from left to right in a single pass, creating a
rightmost derivation
Framework uses a standard parser generator, YACC

Parser creates a syntax tree

Sebastian Morr | The Nut Shell | 21

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Parsing

nutsh has LR(1) grammar: Can be parsed by a bottom-up parser
with lookahead 1 reading from left to right in a single pass, creating a
rightmost derivation
Framework uses a standard parser generator, YACC
Parser creates a syntax tree

Sebastian Morr | The Nut Shell | 21

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Interpretation

Function definition: Added to the symbol table (no scoping)

String expressions: Value can be synthesized
Lazy evaluation, pass-by-value
Nesting statements: Calls are pushed on a stack when entering, and
are removed when leaving the statement

Sebastian Morr | The Nut Shell | 22

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Interpretation

Function definition: Added to the symbol table (no scoping)
String expressions: Value can be synthesized

Lazy evaluation, pass-by-value
Nesting statements: Calls are pushed on a stack when entering, and
are removed when leaving the statement

Sebastian Morr | The Nut Shell | 22

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Interpretation

Function definition: Added to the symbol table (no scoping)
String expressions: Value can be synthesized
Lazy evaluation, pass-by-value

Nesting statements: Calls are pushed on a stack when entering, and
are removed when leaving the statement

Sebastian Morr | The Nut Shell | 22

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Interpretation

Function definition: Added to the symbol table (no scoping)
String expressions: Value can be synthesized
Lazy evaluation, pass-by-value
Nesting statements: Calls are pushed on a stack when entering, and
are removed when leaving the statement

Sebastian Morr | The Nut Shell | 22

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Automated testing

Goal: Automatic verification of lessons

Provide built-in function expect

run("text = ’stressed’")
"Reverse the content of `text` and save it in `text2`!"
prompt {

if test("text2 == ’desserts’") {
expect("text2 = text.reverse")
expect("text.reverse!; text2 = text")
break

} else {
expect("text2 = ’somethingdifferent’")

}
}

Sebastian Morr | The Nut Shell | 23

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Automated testing

Goal: Automatic verification of lessons
Provide built-in function expect

run("text = ’stressed’")
"Reverse the content of `text` and save it in `text2`!"
prompt {

if test("text2 == ’desserts’") {
expect("text2 = text.reverse")
expect("text.reverse!; text2 = text")
break

} else {
expect("text2 = ’somethingdifferent’")

}
}

Sebastian Morr | The Nut Shell | 23

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Automated testing

Goal: Automatic verification of lessons
Provide built-in function expect

run("text = ’stressed’")
"Reverse the content of `text` and save it in `text2`!"
prompt {

if test("text2 == ’desserts’") {
expect("text2 = text.reverse")
expect("text.reverse!; text2 = text")
break

} else {
expect("text2 = ’somethingdifferent’")

}
}

Sebastian Morr | The Nut Shell | 23

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Implementation

Framework is implemented in Go: Concurrency with synchronized
communication, big standard library with Unicode support

2576 source lines of code
Tutorial representation:

Directory, contains several lesson files written in nutsh

Sebastian Morr | The Nut Shell | 24

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Implementation

Framework is implemented in Go: Concurrency with synchronized
communication, big standard library with Unicode support
2576 source lines of code

Tutorial representation:

Directory, contains several lesson files written in nutsh

Sebastian Morr | The Nut Shell | 24

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Implementation

Framework is implemented in Go: Concurrency with synchronized
communication, big standard library with Unicode support
2576 source lines of code
Tutorial representation:

Directory, contains several lesson files written in nutsh

Sebastian Morr | The Nut Shell | 24

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Implementation

Framework is implemented in Go: Concurrency with synchronized
communication, big standard library with Unicode support
2576 source lines of code
Tutorial representation:

Directory, contains several lesson files written in nutsh

Sebastian Morr | The Nut Shell | 24

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Outline

Introduction

The CLI Abstraction Layer

The nutsh Language

Application and Evaluation

Sebastian Morr | The Nut Shell | 25

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Setting

Preparatory computer science courses at the Braunschweig University
of Technology exists since 2003

In the fall semester 2013–2014: 150 students enrolled
Split into two groups: Two thirds Nut Shell, one third paper exercises

Sebastian Morr | The Nut Shell | 26

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Setting

Preparatory computer science courses at the Braunschweig University
of Technology exists since 2003
In the fall semester 2013–2014: 150 students enrolled

Split into two groups: Two thirds Nut Shell, one third paper exercises

Sebastian Morr | The Nut Shell | 26

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Setting

Preparatory computer science courses at the Braunschweig University
of Technology exists since 2003
In the fall semester 2013–2014: 150 students enrolled
Split into two groups: Two thirds Nut Shell, one third paper exercises

Sebastian Morr | The Nut Shell | 26

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Content

2875 lines of nutsh code:

1. Introduction - first examples with
cal

2. Looking and moving around - ls
and cd

3. Helping users to help themselves -
man

4. File system and paths
5. Creating and editing files - mkdir

and editors
6. History and tab completion

7. Java

8. Deleting files and directories -
rmdir, rm

9. Copying, moving and linking files -
cp, mv, ln

10. Process management - ps

11. Aliases

12. Variables

Sebastian Morr | The Nut Shell | 27

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Content

2875 lines of nutsh code:

1. Introduction - first examples with
cal

2. Looking and moving around - ls
and cd

3. Helping users to help themselves -
man

4. File system and paths
5. Creating and editing files - mkdir

and editors
6. History and tab completion

7. Java

8. Deleting files and directories -
rmdir, rm

9. Copying, moving and linking files -
cp, mv, ln

10. Process management - ps

11. Aliases

12. Variables

Sebastian Morr | The Nut Shell | 27

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Content (cont.)

13. Commandline editing

14. Wildcards

15. Quoting

16. Compressing files - tar, gzip,
bzip2

17. Redirection and pipes

18. Looking for patterns - grep

19. Small useful commands

20. wget and curl

21. Typesetting with LATEX

22. Java, part 2

23. Comparing files - cmp, diff, patch

24. Searching - find, locate

25. Sorting

26. Shell scripts

27. Version control with Git

28. Working remotely with SSH

29. Automation with makefiles

Sebastian Morr | The Nut Shell | 28

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths
Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem

Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths
Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example

Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths
Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths
Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions

Let user choose among several paths
Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths

Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths
Use analogies, virtual “home” environment

Sebastian Morr | The Nut Shell | 29

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Survey

After the sixth day, online survey with three parts:

1. General statements, rated from 1 to 10 & help/day

2. Test with 12 questions by neutral third
3. Nut Shell assessment

Sebastian Morr | The Nut Shell | 30

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Survey

After the sixth day, online survey with three parts:

1. General statements, rated from 1 to 10 & help/day
2. Test with 12 questions by neutral third

3. Nut Shell assessment

Sebastian Morr | The Nut Shell | 30

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Survey

After the sixth day, online survey with three parts:

1. General statements, rated from 1 to 10 & help/day
2. Test with 12 questions by neutral third
3. Nut Shell assessment

Sebastian Morr | The Nut Shell | 30

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results

First part: 64 answers in total. 53 Nut Shell users, 11 exercise sheet users

1 2 3 4 5 6 7 8 9 10

Prior knowl.

Fun

Learned a lot

Too hard

Enough time

Relevant

Recommend Nut Shell

Exercise Sheets

Sebastian Morr | The Nut Shell | 31

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results

First part: 64 answers in total. 53 Nut Shell users, 11 exercise sheet users

1 2 3 4 5 6 7 8 9 10

Prior knowl.

Fun

Learned a lot

Too hard

Enough time

Relevant

Recommend Nut Shell

Exercise Sheets

Sebastian Morr | The Nut Shell | 31

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results (cont.)

0 1 2 3 4 5 6 7 8 9 10

Help/day

0 2 4 6 8 10 12

Score

1 2 3 4 5 6 7 8 9 10

Explanations
Tips

Exercises
Use again

Few participants in the control group. Warped results?

Sebastian Morr | The Nut Shell | 32

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results (cont.)

0 1 2 3 4 5 6 7 8 9 10

Help/day

0 2 4 6 8 10 12

Score

1 2 3 4 5 6 7 8 9 10

Explanations
Tips

Exercises
Use again

Few participants in the control group. Warped results?

Sebastian Morr | The Nut Shell | 32

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results (cont.)

0 1 2 3 4 5 6 7 8 9 10

Help/day

0 2 4 6 8 10 12

Score

1 2 3 4 5 6 7 8 9 10

Explanations
Tips

Exercises
Use again

Few participants in the control group. Warped results?

Sebastian Morr | The Nut Shell | 32

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results (cont.)

0 1 2 3 4 5 6 7 8 9 10

Help/day

0 2 4 6 8 10 12

Score

1 2 3 4 5 6 7 8 9 10

Explanations
Tips

Exercises
Use again

Few participants in the control group. Warped results?

Sebastian Morr | The Nut Shell | 32

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Results (cont.)

1 2 3 4 5 6 7 8 9 10 11
0

20

40

60

80

Day

P
ar
ti
ci
pa
nt
s

Sebastian Morr | The Nut Shell | 33

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Discussion

High participant loss is representative

Main results:

Nut Shell motivated students to attend to the course

Having over 63% attending over the whole timespan is highly gratifying!

Lowered demand for external help: More independent students

Sebastian Morr | The Nut Shell | 34

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Discussion

High participant loss is representative
Main results:

Nut Shell motivated students to attend to the course

Having over 63% attending over the whole timespan is highly gratifying!

Lowered demand for external help: More independent students

Sebastian Morr | The Nut Shell | 34

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Discussion

High participant loss is representative
Main results:

Nut Shell motivated students to attend to the course

Having over 63% attending over the whole timespan is highly gratifying!

Lowered demand for external help: More independent students

Sebastian Morr | The Nut Shell | 34

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Discussion

High participant loss is representative
Main results:

Nut Shell motivated students to attend to the course
Having over 63% attending over the whole timespan is highly gratifying!

Lowered demand for external help: More independent students

Sebastian Morr | The Nut Shell | 34

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Discussion

High participant loss is representative
Main results:

Nut Shell motivated students to attend to the course
Having over 63% attending over the whole timespan is highly gratifying!

Lowered demand for external help: More independent students

Sebastian Morr | The Nut Shell | 34

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Conclusions

Due to positive effects, Nut Shell will be used for upcoming
preparatory courses

Another institute has shown interest to use Nut Shell for a Git course
Participant wants to use Nut Shell to teach command line concepts
to pupils
Student’s general feedback very positive
Software and tutorial will be released under a free, open source license

Sebastian Morr | The Nut Shell | 35

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Conclusions

Due to positive effects, Nut Shell will be used for upcoming
preparatory courses
Another institute has shown interest to use Nut Shell for a Git course

Participant wants to use Nut Shell to teach command line concepts
to pupils
Student’s general feedback very positive
Software and tutorial will be released under a free, open source license

Sebastian Morr | The Nut Shell | 35

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Conclusions

Due to positive effects, Nut Shell will be used for upcoming
preparatory courses
Another institute has shown interest to use Nut Shell for a Git course
Participant wants to use Nut Shell to teach command line concepts
to pupils

Student’s general feedback very positive
Software and tutorial will be released under a free, open source license

Sebastian Morr | The Nut Shell | 35

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Conclusions

Due to positive effects, Nut Shell will be used for upcoming
preparatory courses
Another institute has shown interest to use Nut Shell for a Git course
Participant wants to use Nut Shell to teach command line concepts
to pupils
Student’s general feedback very positive

Software and tutorial will be released under a free, open source license

Sebastian Morr | The Nut Shell | 35

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Conclusions

Due to positive effects, Nut Shell will be used for upcoming
preparatory courses
Another institute has shown interest to use Nut Shell for a Git course
Participant wants to use Nut Shell to teach command line concepts
to pupils
Student’s general feedback very positive
Software and tutorial will be released under a free, open source license

Sebastian Morr | The Nut Shell | 35

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Summary

Content of the thesis

1. Design
Universal CLI abstraction layer
DSL for writing and testing lessons

2. Implementation
3. Application

Bash tutorial with 29 lessons

4. Evaluation

Sebastian Morr | The Nut Shell | 36

Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Thank you!

Questions?

Sebastian Morr | The Nut Shell | 37

	Introduction
	The CLI Abstraction Layer
	The nutsh Language
	Application and Evaluation

