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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Motivation

Command line: Powerful, efficient user interface

But: Steep learning curve
Common teaching approach: Static text. Inflexible!
This thesis: More direct, interactive teaching approach

Core idea
Interweave tutorial text with CLI output and react to user’s commands,
the system’s state and output.

Inspiration: Text adventures!
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session

$

cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big
the file is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Example Nut Shell session (cont.)

$

ls -l elephant
-rw------- 1 seb users 10485760 27. Okt 22:25 elephant

Okay, about ten million bytes. ls has the option -sh to display
that in a more comprehensible order of magnitude.

$ ls -sh
10M elephant

10 megabytes? Indeed, the fridge isn’t that large. We have to
make the elephant smaller.
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Overview

Goal
Design, implementation, application and evaluation of a framework that
allows the creation of command line tutorials with this interactive
teaching approach: The Nut Shell.

Outline

1. Construct abstraction layer for uniform access to arbitrary CLIs
2. Introduce new language to describe tutorial lessons
3. Comparative evaluation with about 120 participants
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Outline

Introduction

The CLI Abstraction Layer

The nutsh Language

Application and Evaluation
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Purpose

Goal: Common interface to all supported CLIs

Recognize parts of the command line interaction:

1. Prompt
2. Command
3. Output

Keep all editing features intact
Maintain the CLI’s state
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Architecture

Keyboard Screen

Terminal

Input filter

CLI process

Tokenizer

Logic

tokens
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Requiements

Abstraction layer has to rely on common features of CLIs:

1. User customizable prompts.
2. Readline-style keybindings:

Ctrl + E to jump to the end of the line
Ctrl + U to delete current line, put it in a buffer
Ctrl + Y to reinsert the buffer

Examples:

System shells: Bash, tcsh, zsh, . . .
REPL-loops of programming languages (Ruby, Python, Haskell, . . . )
SQL consoles
Mathematics software (Gnuplot, Sage, Octave)
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Approach

Use special markers for annotation

Suitable choice: Unicode code points from the Private Use Area
(U+E000 – U+F8FF)

Insert into prompt, do not display
inputFilter: Wait for line feed, send sequence to repeat command
between markers
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Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream

Two Operations:

1. Prompt the user for a command

Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command

Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command

Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal

Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command

Store Output token as the command’s output
2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI

Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI
Send command directly to Input Filter

Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Command line operations

Abstraction layer generates token stream
Two Operations:

1. Prompt the user for a command
Write Prompt token to the terminal
Store Command tokens as the user’s command
Store Output token as the command’s output

2. Send a hidden command to the CLI
Send command directly to Input Filter
Capture command and output tokens, but don’t display them

Sebastian Morr | The Nut Shell | 11



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Outline

Introduction

The CLI Abstraction Layer

The nutsh Language

Application and Evaluation

Sebastian Morr | The Nut Shell | 12



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Design goals

As easy to read and write as possible

Syntax resembles C and Go
Use regular expressions

Keep language as small as possible, but powerful enough
Syntactic support for often-used semantical constellations
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Lexical elements

As usual:

Comments
White space
Identifiers
Keywords: break, def, else, if, prompt, return
Operators, delimiters
String literals
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String Expressions

Concatenation: "foo"+"foo"

Check for equality: "foo"+"foo" == "foofoo"

Check for (exact) regex match: "foo" =~ "f[aio]."

Empty string has truth value false, others true
Boolean operators: !, &&, and || as usual
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Built-in functions

say: Output explanation text (indented, colored)

say("This is explaining text.")

"This is the short form."

run: Execute hidden command, return output

run("1+1")
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If statements

if "test" == "test" {
"Everything is OK."

} else {
"Wait, what?"

}

Sebastian Morr | The Nut Shell | 17



Introduction CLI Abstraction Layer The nutsh Language Application and Evaluation

Prompt statements

"Please calculate the product of 6 and 7."
prompt {

if output == "42" {
break

} else {
"Please try again."

}
}
"Well done!"

Infinite loop, prompt user for command before each pass.
Define command and output functions
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Function definitions

Only at top level, avoid name masking!

def say_twice(text) {
say(text)
say(text)

}

say_twice("Hey!")
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Nesting statements

Use case: Check same conditions for group of prompt statements.

def respond_to_help {
if command =~ "help" {

"Sorry, you’re on your own."
}

}

respond_to_help {
prompt { /* ... */ }
prompt { /* ... */ }

}
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Parsing

nutsh has LR(1) grammar: Can be parsed by a bottom-up parser
with lookahead 1 reading from left to right in a single pass, creating a
rightmost derivation

Framework uses a standard parser generator, YACC
Parser creates a syntax tree
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Interpretation

Function definition: Added to the symbol table (no scoping)

String expressions: Value can be synthesized
Lazy evaluation, pass-by-value
Nesting statements: Calls are pushed on a stack when entering, and
are removed when leaving the statement
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Automated testing

Goal: Automatic verification of lessons

Provide built-in function expect

run("text = ’stressed’")
"Reverse the content of `text` and save it in `text2`!"
prompt {

if test("text2 == ’desserts’") {
expect("text2 = text.reverse")
expect("text.reverse!; text2 = text")
break

} else {
expect("text2 = ’somethingdifferent’")

}
}
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Implementation

Framework is implemented in Go: Concurrency with synchronized
communication, big standard library with Unicode support

2576 source lines of code
Tutorial representation:

Directory, contains several lesson files written in nutsh
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Outline

Introduction

The CLI Abstraction Layer

The nutsh Language

Application and Evaluation
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Setting

Preparatory computer science courses at the Braunschweig University
of Technology exists since 2003

In the fall semester 2013–2014: 150 students enrolled
Split into two groups: Two thirds Nut Shell, one third paper exercises
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Content

2875 lines of nutsh code:

1. Introduction - first examples with
cal

2. Looking and moving around - ls
and cd

3. Helping users to help themselves -
man

4. File system and paths
5. Creating and editing files - mkdir

and editors
6. History and tab completion

7. Java

8. Deleting files and directories -
rmdir, rm

9. Copying, moving and linking files -
cp, mv, ln

10. Process management - ps

11. Aliases

12. Variables
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Content (cont.)

13. Commandline editing

14. Wildcards

15. Quoting

16. Compressing files - tar, gzip,
bzip2

17. Redirection and pipes

18. Looking for patterns - grep

19. Small useful commands

20. wget and curl

21. Typesetting with LATEX

22. Java, part 2

23. Comparing files - cmp, diff, patch

24. Searching - find, locate

25. Sorting

26. Shell scripts

27. Version control with Git

28. Working remotely with SSH

29. Automation with makefiles
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Style

Basic teaching style:

State a general problem
Present method or tool for solving this class of problems using a simple
example
Pose problems of increasing difficulty

Often multiple solutions
Let user choose among several paths
Use analogies, virtual “home” environment
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Survey

After the sixth day, online survey with three parts:

1. General statements, rated from 1 to 10 & help/day

2. Test with 12 questions by neutral third
3. Nut Shell assessment
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Results

First part: 64 answers in total. 53 Nut Shell users, 11 exercise sheet users

1 2 3 4 5 6 7 8 9 10

Prior knowl.

Fun

Learned a lot

Too hard

Enough time

Relevant

Recommend Nut Shell

Exercise Sheets
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Results (cont.)

0 1 2 3 4 5 6 7 8 9 10

Help/day

0 2 4 6 8 10 12

Score

1 2 3 4 5 6 7 8 9 10

Explanations
Tips

Exercises
Use again

Few participants in the control group. Warped results?
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Results (cont.)
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Discussion

High participant loss is representative

Main results:

Nut Shell motivated students to attend to the course

Having over 63% attending over the whole timespan is highly gratifying!

Lowered demand for external help: More independent students
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Conclusions

Due to positive effects, Nut Shell will be used for upcoming
preparatory courses

Another institute has shown interest to use Nut Shell for a Git course
Participant wants to use Nut Shell to teach command line concepts
to pupils
Student’s general feedback very positive
Software and tutorial will be released under a free, open source license
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Summary

Content of the thesis

1. Design
Universal CLI abstraction layer
DSL for writing and testing lessons

2. Implementation
3. Application

Bash tutorial with 29 lessons

4. Evaluation
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Thank you!

Questions?
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