SWILzy

v

&
g‘% 3% Technische
A

3& > Universitat
6 U .
274 45 Braunschweig

Ol\rsct‘

Master’s Thesis

Split Packing:
An Algorithm for
Packing Circles with
up to Critical Density

Sebastian Morr

2016-06-02

Institute of Operating Systems and Computer Networks

Supervisors:
Prof. Dr. Sandor Fekete
Dr. Christian Scheffer

II

Abstract

In the classic circle packing problem, one asks whether a given set of circles can be packed into
the unit square. This problem is known to be NP-hard. In this thesis, we present a new sufficient
condition using only the circles’ combined area: It is possible to pack any circle instance with a
combined area of up to ~53.90% of the square’s area. This area condition is tight, in the sense that
for any larger percentage, there are instances which cannot be packed. We call the ratio between
the largest area that can always be packed and the area of the container the critical density. Similar
results have long been known for squares, but to the best of our knowledge, this thesis gives the
first results of this type for circular objects.

Our proof is constructive: We describe a versatile, divide-and-conquer-based algorithm for
packing circles and other objects into various container shapes with up to critical density. It employs
an elegant subdivision scheme which recursively splits the circles into two groups and then packs
these into subcontainers. We call the algorithm Split Packing. Beside realizing all packings below
the critical density bound, there is a second perspective on this algorithm: It can be used as a
constant-factor approximation algorithm when looking for the smallest container in which a given
set of circles can be packed, due to its polynomial runtime.

In this thesis, we demonstrate that the Split Packing approach is applicable to a large number
of different packing problems. Beside for square containers, we are able to apply the algorithm
to pack circles with critical density into right and obtuse triangles, equilateral triangles, isosceles
triangles whose longest side is their base, and rectangles with an aspect ratio of more than ~1.57 : 1.
Additionally, we show that the same algorithm can be used to pack objects other than circles: It can
pack octagons into squares and isosceles right triangles with critical density, and if allowed to rotate
the objects, it can even be used to pack squares into these containers with critical density.

Aside from the obtained results, we believe that the ideas behind Split Packing are interesting
and elegant on their own. We see many opportunities to apply these techniques in the context of
other packing and covering problems.

A browser-based, interactive visualization of the Split Packing approach and other related material
can be found at https://morr.cc/split-packing/.

https://morr.cc/split-packing/

Acknowledgements
I would like to thank the following people for their support in the creation of this thesis:

Christian Scheffer, for always taking time for me, for many fruitful discussions and for sharing
my enthusiasm.

Christiane Schmidt, your lecture on Computational Geometry in 2014 started it all.
Dominik Krupke, for sharing an office, ideas, and Mate.

Enrico Jorns, for creating the beautiful BIEX template.

Heike Laschin, for being my best friend, and for softening my life.

Jan-Marc Reinhardt, for all your encouragement. You were the first one to whom I showed
the Split Packing algorithm.

Marco Nikander, for spending late hours with me pondering over covering problems.

The Pinky Crew: Jakob, Leslie, Marc, Moritz, and Torsten, for sharing breakfast, time, and
friendship.

Sandor Fekete, for sharing your know-how all along, and for suggesting this awesome topic to
me.

Wolfgang Morr, for your love and your unconditional support in more ways than I can count.

The proof-readers: Christian Neukirchen, Dominik Krupke, Jakob Garbe, Jan-Marc Reinhardt,
Jan Steiner, Marc Kastner, and Roland Hieber, for fixing all my embarrassing mistakes.

All participants of the 31™ Bellairs Winter Workshop on Computational Geometry. I drew
much inspiration from every one of you.

Colophon

This document was created using BIEX 2¢ by Leslie Lamport and uses the tubsBIEX class by Enrico
Jorns. The figures were created using TikZ by Till Tantau and the text is set in the Nexus font family

by Martin Majoor.

Contents

1 Introduction

11
1.2
13

Results
Applications
Organization e

2 Related work

21
2.2

Packing SQUATES ¢ o v v it e e e e e e e e e e
Packingcircles

3 Split Packing

31
3.2
33
34

Definitions it i e e e e e e e e
Greedy splitting o e
SplitPacking e
Analysis e

4 Packing circles

4.1
4.2
4.3
44
4.5

Hats e
Non-acute triangles. L
Isosceles triangles L
The problem with acute triangles,
Rectangles e

5 Packing rubies

51
52
53

Gemsandrubies e
Isoscelesright triangles L o o o
SQUATES . . o v e e e e e

6 Future work

Bibliography

NN W

0

15
17
17
20
21

23
23
32
32
38
39

43

50
52

59

63

1 Introduction

Suppose you are given a set of of circles. Can you decide whether it is possible to pack these circles
into the unit square without overlapping one another or the square? This is known as the circle
packing problem, and it is known to be NP-hard [9], which means that there is (probably, assuming
P # NP) no deterministic polynomial-time algorithm which can make that decision.

00e

Qeeo

Figure 1.1: Can these circles be packed into the square?

Surely, there are necessary conditions for a packing to exist. For example, if the circles’ combined
area exceeds the area of the square, we can be certain that they can not be packed, as they will never
fit inside the square without overlap. On the other hand, an upper bound on the circles’ combined
area could also serve as a sufficient condition. We may be able to say: “If the circles’ combined area
does not exceed some number 4, then they can always be packed.”

In fact, we could not only ask for some bound, but for the largest one. This is the problem which
motivated this thesis:

Problem 1. What is the largest a so that any set of circles with a combined area of a can be packed
into the unit square?

Already in 1967, Moon and Moser [34] solved this problem for square objects. They proved that
it is possible to pack a set of squares into the unit square if their combined area does not exceed
1/2. Their method first sorts the squares by size in descending order and then places them in the
container square in a shelf-like manner, as depicted in Figure 1.2. At the same time, 1/2 is the largest
upper bound you could hope for. Consider the square packing in Figure 1.2 consisting of two equal
squares, each of which has one fourth of the container square’s area: If you made the squares only
slightly larger, they could no longer be packed without overlapping one another.

Figure 1.2: Left: Worst-case instance for packing squares into a square. Right: Example for Moon and Moser’s
shelf-packing.

The equivalent problem for packing circles has since been open. When Demaine, Fekete, and
Lang [9] posed Problem 1 in 2010, they already suggested that the critical density may be limited by
the two-circle instance shown in Figure 1.3. Again, it is easy to argue that if these two circles were
only a little larger, we could no longer pack them into the unit square without overlap. This means
that their combined area represents an upper bound on the area which can always be packed.

Figure 1.3: Left: Conjectured worst case for packing circles into a square. Right: Example packing produced
by the Split Packing algorithm.

In this thesis, we will give a constructive proofthat you can indeed pack all circle instances whose
area does not exceed the combined area of the two circles shown in Figure 1.3 into the unit square.
See Figure 1.3 for an example packing. The method is based on a divide-and-conquer approach
which repeatedly splits the circle instance in halves, and then packs them recursively. In Figure 1.4,
we demonstrate how the subdivision of the square into subcontainers looks like for an example
instance.

We will also generalize this packing approach into two directions: On the one hand, Split Packing
can be used to pack circles into other containers than squares, like certain classes of triangles and
rectangles. On the other hand, we will demonstrate that it also can be used to pack other objects
than circles.

1 INTRODUCTION

Figure 1.4: Split Packing recursively subdivides the container into subcontainers (light gray), before packing
the circles into them (dark gray).

1.1 Results

In Tables 1.1 and 1.3 we summarize our results. Each table entry represents a different packing
problem, namely a specific combination of an object shape (like circles or squares), and a container
shape (like a triangle or a rectangle).

For each problem, we call the ratio between the maximally packable area and the container’s area
the critical density. For all packing problems listed, we will give a constructive proof that any object
instance can be packed into the container using rotations and reflections if the objects’ combined
area does not exceed this critical density. Each table entry contains a graphical representation of the
worst-case instance which defines the critical density.

Split Packing can also be used as an approximation algorithm of the smallest-area container
which can pack a given set of objects. The constant approximation factor ALG/OPT is equal to the
reciprocal of the critical density. It is also listed in the table.

Note that we restrict some container types to fulfill certain conditions. For example, our results
for packing circles into triangles only hold if the container is a right or obtuse triangle.

3

1.1 RESULTS

Table 1.1: Overview of results for packing circles.

Circles in a right/obtuse triangle (Theorem 6)
Condition: a% + b* < ¢?
, —(@a—=b—-c)a+b—c)(a—b+c)
D . 91%
enszty\/ (a+b1o) T < 53.91%

Approximation factor: Larger than 1.8552

Circles in a thick isosceles triangle (Theorem 7)
c
Condition: — < b <c¢
ﬁ p— J—
— 2b + V/4b2 — 2)?
Density: 48.60% < (< =20+ T 53.91%
2cV/4b? — ¢?
Approximation factor: Between 1.8552 and 2.0576

Circles in a square (Corollary 2)

b a
c
b
c
Circles in a long rectangle (Theorem 8)
| Condition: w > #h ~ 1.56071
t e rth o,
Density: 1w < 50.33%
w

4
Approximation factor: n_i > 1.9870

Condition: —

Density: 3L ~ 53.90%

+2v2
34+2v2

Approximation factor: S 1.8552

1 INTRODUCTION

Table 1.3: Overview of results for packing other object types.

“Sharp rubies” in an isosceles right triangle (Theorem 11)

Density: 41/2(v/2 — 1) +3+/2 — 7 ~ 88.34%

Approximation factor: ~ 1.1320

Squares in an isosceles right triangle (Corollary 1)

Density: 50%

Approximation factor: 2

Octagons in an isosceles right triangle (Corollary 1)

Density: 8(5v/2 — 7) ~ 56.85%
Approximation factor: ~ 1.7589

“Rubies” in a square (Theorem 12)

Density: 81/2(v/2 — 1) +6v/2 — 15 ~ 76.67%

Approximation factor: ~ 1.3043

Squares in a square (Corollary 2)

Density: 50%

Approximation factor: 2

Octagons in a square (Corollary 2)

Density: 8(5v/2 — 7) ~ 56.85%
Approximation factor: ~ 1.7589

1.2 APPLICATIONS

1.2 Applications

Circle packing is a natural, intuitive problem that has numerous applications in engineering, science,
and everyday life.!

Packaging An obvious application is packaging: Given a set of cylindrical objects (like bottles or
cans), one may want to determine the minimum-volume parcel in which all objects can be packed
[7]. Or, given a shipping container of fixed size, one may want to pack as many rolls of paper into it
as possible [13].

Bundling A similar application involves cylinder bundles: One may want to run several optical
fibers through a tube, or place multiple pipes with different diameters inside of a larger one [43]. As
another example, a car manufacturer may want to drill circular holes into a car’s body and route
several sensor cables through that hole, while keeping the hole as small as possible [40].

Cutting industry Circle packing is applicable in the cutting industry, where one may want to cut
circular pieces from a material, minimizing waste [41]. A related problem is the layout of control
panels containing circular controls (like in airplane cockpits, for example), which should be placed
space-efficiently [7].

Communication In the context of digital modulation schemes, quadrature amplitude modulation is
using circle packings to divide the two-dimensional phase-amplitude space into regions, which
encode different binary patterns. Larger circles lead to increased noise tolerances [36]. Network
planners may want to place radio towers in a geographical region, minimizing interference, but
maximizing coverage [41].

Chemistry Other applications stem from chemistry, where one can study dense packings of atoms
in crystals or macromolecules [44].

Foresting In foresting, one may want to plant trees so that the grown forest will be as dense as
possible, but the trees do not hinder one another’s growth [41].

Design A surprising application of circle packing involves the design of crease patterns for origami.
In this problem, one wants to determine a sequence of folds of a square piece of paper, so that the
result resembles a specific shape. The design of origami structures which resemble trees involves a
packing problem called circle/river-packing. See Figure 6.2 on page 60 for an example. This kind of
origami design was pioneered by Robert J. Lang [26]. Using circle packings only (without “rivers”),
one can design crease patterns for folding arbitrary stars.

INote that, in this thesis, we show a rather theoretical result of limited practical use. As Aleks commented on an example
packing produced by Split Packing: “I'm sure this is how Amazon calculates packages. Buy something tiny, getitin a
HUGE box.” (https://twitter.com/nd_cmptr/status/722139780608299009)

https://twitter.com/nd_cmptr/status/722139780608299009

1 INTRODUCTION

1.3 Organization

This rest of this thesis is structured as follows: First, in Chapter 2, we give an overview of related
work regarding the packing of squares and circles. In Chapter 3, we describe the general Split
Packing algorithm and analyze its properties. We then proceed to show how Split Packing can be
applied to several different packing problems: In Chapter 4, we discuss problems involving circular
objects, and in Chapter 5, we show that the algorithm can even be generalized to pack objects other
than circles. Finally, in Chapter 6, we show some directions for future work.

7

2 Related work

The literature on packing can roughly be divided into three categories, depending on the authors’
objective:

Some authors strive to obtain the optimal solutions to packing problems. As almost all interesting
packing problems are NP-hard, this becomes incredibly computationally expensive for more than a
few objects. So, another approach is to design fast heuristics in order to obtain “good” solutions.
These solutions are often close-to-optimal, but may degenerate for certain instances and thus make
no guarantees about the actual quality of the produced packings. Finally, some authors develop
approximation algorithms, which do make performance guarantees about the obtained solutions.
In the best case, these algorithms produce solutions which are only a constant factor away from the
optimal ones. This last approach is the one which we also follow in this thesis. There has been some
work regarding approximation algorithms for packing rectangular objects, but similar problems
with circular objects have not received much attention so far.

A packing problem consists of three parts: The first part is the type of objects that are to be packed.
For example, these can be square or circular objects, and they can be allowed to have different sizes
or be restricted to be of equal size. The second part is the type of the container, for example, a square,
a triangle, or a general polygon. Thirdly, one can define restrictions on the movement of the objects:
The objects could be allowed to rotate, or be restricted to translations only. Throughout this thesis,
we allow the objects to be translated, rotated and reflected unless mentioned otherwise. There are
also online variants of packing problems, where the object instance is not known beforehand, but
for the purpose of this thesis, we restrict ourselves to offline approaches.

In general, packing arbitrarily-shaped objects into arbitrary containers can immediately shown
to be NP-hard: Consider a rectangular container of dimensions 2 x n and rectangular objects of’
height 1, whose widths add up to 2n. The decision problem whether it is possible to pack these
objects into the container yields a reduction from PARTITION.

2.1 Packing squares

We begin by briefly reviewing related work on packing squares into various containers. Algorithms
which pack squares are interesting to us in the context of this thesis as we can directly use them
for packing circles: We replace each circle of radius » with a square of edge length 2r and pack the
resulting squares using one of the square-packing algorithms to obtain a packing of the original
circle instance. In a sense, square-packing approximation algorithms provide us with lower bounds
on what more specialized circle-packing approximation algorithms should be able to accomplish.

10

2.2 PACKING CIRCLES

2.1.1 Hardness

We get a seemingly simple packing problem by restricting the container as well as the objects to be
(not necessarily equal) squares. But even the decision problem whether it is possible to pack a given
set of squares into a square container was shown to be strongly NP-complete by Leung et al. [27]
through a reduction from 3-PARTITION.

For another variant, we could restrict the square objects to be equally sized, but allow the container
to be arbitrary. In this case, too, the decision problem remains hard: Fowler, Paterson, and Tanimoto
[12] showed it to be NP-hard to pack equal squares into arbitrary polygons with holes by a reduction
from 3-SAT.

2.1.2 Approximation algorithms

As mentioned in the introduction of this section, we can directly use approximation algorithms for
packing squares to obtain approximation algorithms for packing circles. If we are given an algorithm
which can pack all square instances with a combined area of a into a given shape, we immediately
get an algorithm which can pack all circle instances with a combined area of Ja ~ 0.7854a into that
shape.

Moon and Moser [34] developed a packing algorithm for squares with a tight density bound: Their
algorithm can pack all square instances with a combined area of 1/2 into the unit square. It works
by sorting the squares by their size and placing them into the square in a shelf-like manner, see
Figure 1.2 on page 2. But they also proved that 1/2 is the critical density when packing squares into
a square: Two squares, each with an area of more than 1/4 of the container’s area, cannot be packed.
As by our earlier remark, this algorithm can be used to pack circles: It can pack all circle instances
with a combined area of § ~ 0.3927 into the unit square.

Kleitman and Krieger [25] showed that any square instance with a combined area of 1 can be
packed into a rectangle of dimensions % X /2 &~ 1.1547 x 1.4142, and that this is the smallest-area
rectangle with that property. The packing density in this case is about 0.6124. Applied to circles,
this result means that all circle instances with a combined area of 1 can be packed into a rectangle
of dimensions \/% X % ~ 1.3030 x 1.5958, leading to a packing density of about 0.4810.

Hougardy [23] recently showed that for any set of squares with a combined area of 1, there is
some rectangle with an area of less than 1.4 in which the squares can be packed using a computer
generated proof. This means that for any set of circles with a combined area of 1, there is some
rectangle with an area of less than 27 ~ 1.7825 in which the circles can be packed.

2.2 Packing circles

There is a large body of work regarding the packing of circles into various containers. Most authors
have considered the packing of equal circles into squares, see Szabo et al. [41] for an overview of
numerous heuristics and optimization methods. Hifi and M’hallah [21] survey the literature on
packing unequal circles into squares, rectangles, circles and other shapes, as well as on packing
spheres into three-dimensional containers.

2 RELATED WORK

2.2.1 Hardness

The decision problem whether it is possible to pack a given set of unequal circles into a given
square, a rectangle, or an equilateral triangle was shown to be NP-complete by Demaine, Fekete,
and Lang [9], by a reduction from 3-PARTITION: They build a circle instance which first forces some
symmetrical free “pockets” in the resulting circle packing. The instance’s remaining circles can
then be packed into these pockets if and only if the related 3-PARTITION instance has a solution.

2.2.2 Density bounds

The densest packing of equal circles in the plane can be easily guessed: Arrange them on a hexagonal
grid, so that each circle touches six others. This arrangement results in a packing density of
\/Lﬁ ~ 0.9069. An incomplete proof was given by Thue [42], which was later fixed by Fejes Téth [10].
For a simple proof, see the paper of Chang and Wang [8§].

For unequal circles, the optimal packing density can get arbitrarily close to 1: The circle instance
can be chosen so that it can be packed in the manner of an Apollonian gasket (see Figure 2.1), or in

another asymptotically space filling manner, like in the construction of Bourke [5].

Figure 2.1: Circle instances which force a packing in the style of an Apollonian gasket approach a packing
density of 1.

2.2.3 Optimal packings

A problem which has been considered a lot is the following: What is the smallest square in which n
unit circles can be packed? Surprisingly, optimal results are only known for n < 35.

The optimal packings of up to nine equal circles into a square were already known in 1965: The
cases for n < 6 are trivial, Schaer [37] proved the optimal solutions for n = 7 and n = 8, and Schaer
and Meir [38] the one for n = 9.

The optimal solution for n = 10 was confirmed only in 1990, by Groot, Peikert, and Wiirtz [18]. In
the same paper, they also prove the optimal solutions for 11, 12 and 13 circles. See Wiirtz, Monagan,
and Peikert [44] for an overview of the history of optimal solutions for n < 13.

Some years later, Nurmela and Ostergird [35] provided computer-aided optimality proofs for
n < 27. Their algorithm is based on a procedure by Peikert et al. [36]. Markdt and Csendes [32] give

11

12

2.2 PACKING CIRCLES

computer-aided proofs for n = 28,29, 30 within tight tolerance values. Finally, Locatelli and Raber
[29] proved solutions for up to n = 35 to be optimal also within small tolerance values.

2.2.4 Approximation algorithms

When Demaine, Fekete, and Lang [9] posed the problem of finding the critical density for packing
circles into a square (Problem 1), they also described a straightforward quadtree-based approximation
algorithm which can guarantee a packing density of {7 ~ 19.63%.

Miyazawa et al. [33] devised asymptotic polynomial-time approximation schemes for packing
unequal circles into the smallest number of unit bins and for packing circles into a strip of unit
width and of minimum height. They first pack “large” circles by solving a semialgebraic system,
then cut the remaining free space into sub-bins, and pack the smaller circles into these bins by
starting the same algorithm recursively.

Recently, Hokama, Miyazawa, and Schouery [22] developed an asymptotic approximation algo-
rithm for the online version of the circle bin packing problem. Their algorithm also differentiates
between large and small circles: They pack large circles according to the best known packings
of'equal circles, whereas small circles are placed in recursively subdivided hexagonal bins. This
approach has an asymptotic competitive ratio of at most 2.4394. They also give a lower bound
0f2.2920 for any bounded space algorithm for that problem.

2.2.5 Heuristics

For instances that contain too many circles to determine optimal packings, one can ask for lower
bounds on the density of optimal packings; that is, the smallest known containers into which the
circles can be packed. Many authors employ heuristics to produce good solutions for circle packing
problems. A considerable amount of work has been put into finding new records, mostly for equal
circles. The best known solutions for packing equal circles into squares, circles, rectangles, and
other containers are continuously published on Specht’s website http://packomania.com [39].

The works related to this idea are too numerous to be covered here in their entirety, but we
will present some of the more important attempts. As described, these approaches do not give
performance guarantees, but give lower bounds on the optimal packing of single instances. Most of
the works mentioned here have lead to improvements of the best known packings in the literature
at the time they were published.

Quasi-human and quasi-physical George, George, and Lamar [14] developed a set of heuristics for
packing unequal circles into rectangles, based on enumerating stable solutions, where a circle is
either on the ground or has two lower contacts. To get out of local optima, they evaluate a variety
of approaches, like “shaking down” circles or applying genetic algorithms to improve the stable
solutions.

Graham et al. [16] propose a billiard simulation approach, in which the circles are physically
simulated as hard disks, and then apply some additional steps to tighten the found packings.

Boll et al. [4] model the disks as moving particles with repelling forces, and simulate them using
a strategy resembling simulated annealing.

http://packomania.com

2 RELATED WORK 13

Wang et al. [43] describe a “quasi-physical, quasi-human” approach, which first simulates the
circles according to gravity, then finds circles which are “most squeezed”, and re-inserts them
randomly.

Huang et al. [24] apply a quasi-human heuristic, which places new circles in gaps of approximately
the same size as the circle, and combine it with a self-look-ahead strategy which evaluates how
beneficial the choice of a certain placement for each circle is.

Lépez and Beasley [30] apply a metaheuristic called formulation space search, which alternates
between two different heuristics, to avoid getting stuck in local minima. After that, they finish off
with an improvement phase, which swaps circles if this improves the solution.

He, Huang, and Yang [20] start with a random configuration of unequal circles in a square,
simulate them using a quasi-Newton method to reach a minimum energy state, and then perform
swapping steps, to get out of locally optimal solutions, followed by a postprocessing step to increase
the result’s precision.

Pattern-based Graham and Lubachevsky [17] identify various regular patterns for packing equal
circles into a square, which produce close-to-optimal results for instances where the number of
circles is equal to certain expressions like k?, k — 1, or k(k + 1).

The same authors [31] studied curved hexagonal packings of equal circles into a circle, a pattern
derived from known best packings of circles in hexagons. For large 7, a curved hexagonal packing
was found to be suboptimal. Instead, good packings found by the authors seem to have a curved
hexagonally-packed area in the center and an irregular pattern along the periphery.

2.2.6 Optimization methods

Another much-explored idea is to model the packing problem as a set of (mostly nonlinear) inequal-
ities and to solve this system using commercial solvers.

Stochastic optimization Zhang and Deng [45] combine simulated annealing and tabu search to pack
unequal circles into a circle.

Flores, Martinez, and Calderdn [11] solve the problem of packing unequal circles into a circle
using genetic algorithms and other evolutionary approaches. As the evolved solutions are not always
valid, they evaluate different repair strategies, like repulsion-based or Delauny-based methods.

Addis, Locatelli, and Schoen [1] model the problem of packing circles into a square as a global
nonlinear optimization problem and apply a stochastic search method similar to Multistart, which
they refer to as Monotonic Basin Hopping, and which is inspired by molecular conformation problems.
They also adapted this algorithm to pack circles into circular containers [19].

Linear optimization Litvinchev, Infante, and Ozuna Espinosa [28] compute approximated solutions
to packing circles into rectangles by restricting their coordinates to a regular grid and formulate a
binary Linear Problem, where the variables represent the assignment of the circles’ centers to the
grid’s nodes.

Nonlinear optimization Birgin and Sobral [3] design packing problems as a smooth nonlinear pro-
gramming model, and solve them using continuous optimization. They give multiple formulations
of the problem, allowing them to pack different-sized circles into circles, squares, strips, rectan-

14

2.2 PACKING CIRCLES

gles or equilateral triangles and to pack spheres into spheres, cuboids, tetrahedra, pyramids and
cylinders.

Birgin and Gentil [2] note that, given the contacts of the circle objects with the container’s
boundary beforehand, the number of constraints can be reduced significantly. They learn this
contact information from the previously best known solutions in the literature and solve the now
overdetermined linear system to get high-precision results.

3 Split Packing

While trying to prove the critical density for packing circles into a square, we worked on the
assumption that it would in fact be possible to pack all circle instances whose area would not exceed
that of the two-circle instance shown in Figure 1.3 on page 2. When we attempted to find a strategy
which could pack this area, many strategies turned out unsuccessful. For example, a shelf-packing
based approach inspired by Moon & Moser’s algorithm for packing squares does not work for five
equal circles, see Figure 3.1.

Figure 3.1: Shelf-packing does not work for five equal circles. The upper right circle slightly overlaps the
middle circle.

At one point, we tried restricting the input instance with the hope that this would make the
problem easier. We decided to only allow circles which have areas equal to a negative power of two
of the total available area. This would only allow half-, quarter-, eight-, sixteenth-circles, and so on,
in terms of the combined circle area a. We were surprised to find that these instances were easy to
pack!

Imagine starting with the total area a combined into one large circle. It is easy to check that
this circle can be packed, by placing it in the middle of the square, see the upper left of Figure 3.2.
Now, we are allowed to “split” the circle into two half-circles, resulting in the worst-case instance
discussed in the introduction. If we also cut the square into halves along the circles’ tangent, both
circles now are incircles of isosceles right triangles. If we now split any circle in half again, we
can also divide its surrounding triangle into two smaller ones with half the area, and again the
resulting circles are the triangles’ incircles. This allows us to recurse, and to repeat the splitting as
often as necessary, until we arrive at the desired circle instance. This divide-and-conquer approach

16

to recursively split the set of input circles into subsets is the first key idea of the Split Packing
algorithm.

Figure 3.2: Splitting circles in half’is easy.

If we now want to drop the restrictions on the circles, and allow arbitrary instances again, we
run into a problem: What if we need to split a circle, but we do not want to split it in half? Instead,
we may want to make one of the resulting circles larger than the other one. We would have to
shift our cut to the side, like in the lower right of Figure 3.2. This subdivides the triangle into
another (smaller-than-half) triangle and a quadrilateral. For the small triangle, we can start another
recursion, but it is unclear why we can continue with the recursion for the quadrilateral. Its shape
resembles our triangles, but the lower corner is “cut oft”. We would need an argument why these
“degenerate triangles” do not break our packing strategy.

This is where the second key idea of the Split Packing algorithm comes into play: When performing
the top-level split, we could already decide which circles of the input instance should go on which
side of the cut-line. With the power-of-two instances, it did not matter at all how we split the circle
set in half; as we could always split it into equally-sized halves. But for general circle instances, we
need to proceed more carefully. We are going to perform the splitting using an algorithm which
resembles greedy scheduling. This will make sure our resulting subgroups are close to equal in
terms of their combined area. But if the groups’ areas deviate from the targeted 1:1 ratio, we can
make additional statements about the minimum circle size in the larger group, leading to a rounded
subcontainer which will make the “cut-off corners” irrelevant.

In the rest of this chapter, we will detail this process. As we will see, the algorithm also generalizes
to other container types and object shapes.

3 SpriT PACKING

3.1 Definitions

First, we introduce a few basic notions, mostly to simplify some of the later proofs.

Definition 1. For the purpose of this thesis, a shape is either an open circle or an open polygon
(“open” meaning that the shape’s boundary is not part of the shape).

What it means to pack objects into a container is defined as one would intuitively expect:

Definition 2. A packing of a set of shapes (the objects) into another shape (the container) is an assign-
ment of a translation, a rotation and a reflection to each shape so that

m the pairwise intersections of all objects are empty and

m all objects are a subset of the container.

We continue with some definitions which make it easier to talk about classes of circle instances:
Definition 3. For each 0 < g, an a-circle is a circle with an area of a.

Definition 4. A circle instance is a multiset of nonnegative real numbers, which define the circles’
areas. For any circle instance C, sum(C) is the combined area of the instance’s circles and min(C)
is the area of the smallest circle contained in the instance.

For example, for the circle instance C = {1,1,2,3}, sum(C) = 7 and min(C) = 1.

Definition 5. C is the set of all circle instances. C(a) consists of exactly those circle instances C with
sum(C) < a. Finally, C(a, b) consists of exactly those circle instances C € C(a) with min(C) > b.

Let us give another example for the previous definition, as it is crucial for the rest of this thesis:
For any circle instance C contained in C(1, %), the combined area of C’s circles is at most 1, and at
the same time, each of C’s circles is at least an eight-circle.

Finally, we introduce two definitions which come in handy when discussing worst-case instances:

Definition 6. A shape’s incircle is the largest circle that can be packed into the shape.

Definition 7. A shape’s twincircles are the largest two equal circles that can be packed into the shape.

3.2 Greedy splitting

The method which we use to split the circle instances in half, SprrT (Algorithm 1), resembles a
greedy scheduling algorithm, which is why we call the process greedy splitting. The algorithm takes
two inputs: The first is an arbitrary circle instance C, which is to be split into two groups. The
circles are assumed to be sorted by size in descending order.

The second input is a tuple of two positive factors, which determines the targeted ratio of the
resulting groups’ combined areas. For example, if we wanted to split C into equally sized halves,
we could choose the tuple (1,1). The tuple (3, 1) would give the same result. For asymmetric
containers, we may want to target a different ratio. For example, if we wanted to make one group
three times as large as the other, we could use the tuple (1,3). We call these tuples split keys:

17

18

3.2 GREEDY SPLITTING

Definition 8. A split key is a tuple of two positive real numbers.

The algorithm first creates two empty “buckets”, and in each step adds the largest remaining
circle of the input instance to the “more empty” bucket. We say that a bucket is relatively more
empty if the ratio between the sum of its current content and the associated factor of the split key is
smaller than the ratio in the other one. In the simplest case, the split key will actually describe the
desired areas of the two groups, and Spr1T puts the next circle into the group which has the smaller

“relative filling level”.

Algorithm 1 Se117(C, F)
Input: A circle instance C, sorted by size in descending order, and a split key F = (f1, f2)

Output: Circle instances Cy, Cy
Ci+ 0
Cz — O
forallc € Cdo
j = argmin, Sun}& > Find the index of the more empty bucket.
Ci+ CU {c}

end for

Although the greedy splitting aims to produce subinstances with area ratios close to the spec-
ification of the split key, of course it will not always be possible to achieve these ratios exactly.
For example, if the input instance consists of few very large circles, it may even be impossible to
distribute them in the specified ratios.

On the other hand, if the resulting groups’ area ratio does deviate from the split key, we gain
additional information about the “relatively larger” group: The more this group exceeds its targeted
area, the larger the minimum size of its elements.

Lemma 1. For any C; and C; produced by Serrt(C, (f1, f2)):

sum(C;)
fi

Proof. If S“Hf‘ffci) < Sun}]() , then the lemma says that min(C;) is larger than a negative number,

min(C;) > sum(C;) — f;

which is certainly true.

Otherwise, set r := %

. This value describes the smaller “relative filling level” by the time the
algorithm ends. Now assume for contradiction C; contained an element smaller than sum(C;) — f;r.
As the elements were inserted by descending size, all elements which were put into C; after that
element would have to be at least as small. So the final element put into C; (let us call it ¢) would be
smaller than sum(C;) — fir, as well.

But this means that
sum(C;) —c _ sum(C;) — (sum(C;) — fir)
7 > 7

:}’,

3 SprLiT PACKING 19

meaning that at the moment before ¢ was inserted, the relative filling level of C; would already have
been larger than r. Recall that 7 is the smallest filling level of any group by the time the algorithm
ends, meaning that at the time when c is inserted, C;’s filling level is already larger than the filling
level of the other group. This is a contradiction, as the greedy algorithm would choose to put ¢ not
into C;, but into the other group with the smaller filling level in this case. O

We can go even further: If one group’s relative filling level becomes twice as large as the other
one’s, the group must consist of a single circle:

Lemma 2. For any C; and C, produced by Serrr(C, (f1, f2)):

sum(C;) sum(C;)
7 >2 f]

= min(C;) = sum(C;)
Proof. By Lemma 1,

sum(C;)
fi

which means that the minimum size of the circles in C; is already more than half of'its total sum.

> sum(C;) _fisum(Ci) = 1sum(Ci),

min(C;) > sum(C;) — f; T2f 2

The only possible instance which satisfies this constraint is a single circle with area sum(C;). O

Note that we usually do need this last property and will ignore the additional constraint on
min(C;), except in Chapter 5, where we discuss packing objects other than circles.

We are now going to define a term which encapsulates all mentioned properties of the circle
instances output by Spr1T. These properties depend on the used split key, and also on the combined
area a and the minimum circle size b of the circle instance, which is why it has three parameters.
We say that instances produced by Ser1T are (a, b, F)-conjugated:

Definition 9. For any 0 < b < g and any splitkey F = (f1, f2), we say that the tuples (a3, b1), (a2, b2)
are (a, b, F)-conjugated if

B +a;=a,

u bi > b;

mb >a; —fi%, and
] %>2%:>bi2511’.

Definition 10. Two circle instances C; and C, are (a, b, F)-conjugated if there are any (a,b, F)-
conjugated tuples (a1, b1) and (az, bp) so that C; € C(ay,b1) and C; € C(ap, by).

We can now associate this property with SpLIT in the following theorem:

Theorem 1. For any C € C(a,b) and any split key F = (f1, f2), SPL1T(C, F) always produces two
(a,b, F)-conjugated subinstances.

20

3.3 SpLIT PACKING

Proof. That the subinstances’ combined areas add up to a follows directly from the algorithm. As
the minimum size of all circles in C is b, this must also be true for the subinstances, so min(C;) > b.
The other two minimum-size properties follow from Lemma 1 and Lemma 2. O

As described, one way to think about conjugatedness is that it gives guarantees for the minimum
sizes of the “larger” produced subinstance. To give you an intuition of what the conjugatedness
property will be used for in the later chapters, we show several examples of shapes with (a,b, F)-
conjugated parameters in Figure 3.3: 4; and a, represent the area which can be packed into the
respective shape, while b; and b, represent their “rounding”. The shapes can always be packed
because if one shape gets larger, it is rounded so much that it still fits inside the container.

) N A

0.8 1.0

0.5 0.51

0.6

0.5 0.49

0.4 02

Figure 3.3: The two shapes’ parameters are (a, b, F)-conjugated, which is why they always can be packed. The

numbers represent a1 and a,, and in this case are the areas of the shapes’ incircles.

3.3 Split Packing

The Spr1T algorithm presented in the previous section, in addition to the properties of the instances
it produces, are the foundations on which we now build the central theorem of'this thesis: The Split
Packing theorem. Split Packing by itselfis a general approach to pack circles and other shapes into
containers. The later chapters of this thesis will all apply the Split Packing theorem to different
object and container types.

First, another definition. We will often want to state that a shape can pack all circle instances
which belong to a certain class. For this, we define the term C-shape:

Definition 11. For any C C C, a C-shape is a shape in which each C € C can be packed.

For example, if a shape is a C(a)-shape, it means that it can pack all circle instances with a
combined area of 2. And a C(4a, b)-shape can pack all circle instances with a combined area of g,
whose circles each have an area of at most b. With these preparations, we can now state our central
theorem:

Theorem 2 (Split Packing). A shape s is a C(a, b)-shape if there is a split key F, so that for all (a,b, F)-
conjugated tuples (a1, bq) and (az, by) one can find a C(ay, by)-shape and a C(ay, by)-shape which can be
packed into s.

Proof. Consider an arbitrary C € C(a,b). We use SpL1T(C, F) to produce two subinstances C; and
Cy. We know from Theorem 1 that those subinstances will always be (a, b, F)-conjugated. So if we
can indeed find two shapes which can pack these subinstances, and if we can pack these two shapes
into s, then we also can pack the original circle instance C into s.

3 SprLiT PACKING

Note that in the extreme case that C consists of a single circle, SpL1T(C, F) will yield two circle
instances C; = {C} and C; = @. For this case, Theorem 1 guarantees a minimum size of a for the
first group, and the associated C(a;, b1)-shape is just an a-circle. This means that we can simply
place the input circle in the container, and stop the recursion at this point. O

Written as an algorithm, Split Packing looks like this:

Algorithm 2 SpriTPACK(S, C)

Input: A C(a,b)-shape s and a circle instance C € C(a, b), sorted by size in descending order
Output: A packing of C into s
Determine split key F for shape s

(C1,Cp) « Serrt(C, F) > See Algorithm 1.

foralli € {1,2} do
a; < sum(C;)

b; < minimum guarantee for C; > See Definition 9.

Determine a C(a;, b;)-shape s;
SPLITPACK(s;, C;)

end for

Pack sq, s», and their contents into s

To summarize, to apply SPLITPACK to a shape, we need the following elements:

1. a strategy to determine the shape-specific split key F,

2. a strategy to determine a C(ay,b;)-shape and a C(ay, by) for all (a,b, F)-conjugated tuples
(a1,b1) and (ay, by), and

3. astrategy to pack these two shapes into s, and a proof why this always works.

Note that the Split Packing algorithm can easily be extended to allow splitting into more than
two subgroups. For simplicity, we only describe the case of two subgroups here, as this suffices for
the shapes we discuss in this thesis.

3.4 Analysis

There are two perspectives on the implications of the Split Packing theorem. Suppose that we
have all three elements mentioned above in place so that we can use Split Packing to pack each
circle instance in C(a) into a given shape. First, we now have a sufficient condition for the decision
problem if'a given circle instance can be packed into a given container: If the circles have a combined
area of at most 4, then the instance can be packed.

Second, Split Packing can also be used as an approximation algorithm. Say you are given a circle
instance of combined area 4, but now we want to find the smallest container of a certain shape (for
example, triangular or square) in which the instance can be packed. We can then use Split Packing
as an approximation algorithm: Select a C(a)-shape whose guaranteed packing density d is as high

21

22

3.4 ANALYSIS

as possible. We can then be sure that this container has at most % times the area of the optimal
container.

We will first show that Split Packing has polynomial runtime, as required for an approximation
algorithm, and then argue about the approximation factor.

Theorem 3. Split Packing requires O(n) basic geometric constructions and O (n?) numerical operations.

Proof. To argue why we only need a linear number of geometric constructions, we can count the
nodes of the recursion tree: Each subcontainer either has two children (if more than one circle
needs to be packed inside, in which case a Spr1T is performed), or one (in this case, the child is a
single circle and the recursion ends). Without the circles, the recursion tree is a full binary tree with
n leaf nodes, meaning that it has exactly n — 1 interior nodes. The root node is the container of the
packing problem, which does not need to be packed. In total, we need to pack 2n — 2 subcontainers,
in addition to the 7 circles of the input instance, leading to O(n) geometric constructions.

In addition, to build the recursion tree, we need at most a quadratic number of numeric operations:
Before SPLITPACK is first invoked, the circle instance has to be sorted by size in descending order,
this can be done in O(nlogn) time. Additionally, each run of the SprLrT subroutine then takes linear
time in the size of its input. If SpLIT would partition its input into two subinstances with a similar
number of elements in each case, this would also lead to a runtime of O(nlogn), but in the worst
case, each run only splits off one element, so that the total time needed for all SprLIT operations is

n+m—1)+nm—-2)+---+1€ 0#?).
O

Theorem 4. Split Packing, when used to pack circles into a C(a, b)-shape of area A, is an approximation
algorithm with an approximation factor of %, compared to the container of minimum area.

Proof. We know from the previous theorem that Split Packing has polynomial runtime.
As for the approximation factor, we can be sure that the area of the optimal container OPT needs
to be as least 4, as we need to be able to fit the circles inside without overlap:

OPT > a

At the same time, the area of the approximated container ALG is exactly A, which means that

ALG<A

OPT — a’

4 Packing circles

In the previous chapter, we gave a very general description of how Split Packing works. In this
chapter, we will show how to apply the approach to concrete packing problems, namely, packing
circles into certain triangles and rectangles. For each shape, we will demonstrate two properties:
First, we will argue about the worst-case circle instance in terms of the density of its optimal packing.
This instance constitutes an upper bound to the question “How much area can always be packed?”,
because we can show that, given more area, we can find instances which cannot be packed.

But second, we are going to show how Split Packing can be used to pack all instances of this
area into the shape. This is a constructive way to show a lower bound to our problem. Both pieces
together give the answer to Problem 1: We have found the largest area 4, so that circles with this
combined area can always be packed into the shape, and we have a polynominal-time algorithm
that actually realizes the packing.

4.1 Hats

We saw in Chapter 3 that when applying SPLIT to a circle instance, we can make statements about
the minimum circle size of the “relatively larger” group. If you think about how a circle of minimum
size can be placed in a container, there may be certain points which can never be covered by a circle
without overlapping the container’s boundary. For example, if the container’s boundary contains
sharp angles, the minimum-size circle may be too large to cover all the angle’s area. As we cannot
use this for packing the circle instance at all, we may as well cut this area from the container without
changing its packing capabilities.

Technically, you can calculate the usable area of a container shape by first eroding it by a circle of
minimum size, and then dilating the result with the same circle.

This observation motivates a family of shapes which resemble rounded triangles. We call these
shapes hats:

Definition 12. For each 0 < b < g, an (a, b)-hat is a non-acute triangle with an incircle of area 4,
whose corners are rounded to the radius of a b-circle, see Figure 4.1. Call the two lower angles of
the original triangle left-angle and right-angle. If we say right hat or obtuse hat, the hat is based on a
right/obtuse triangle.

24 4.1 HATS

left-angle right-angle

base
Figure 4.1: An (a, b)-hat.
In the rest of this section, we will show that all circle instances with a combined area of up to a
with a minimum circle size of b can be packed into an (a, b)-hat.

Definition 13. To get a hat’s associated split key, split the underlying triangle orthogonally to its base
through its tip, and inscribe two circles in the two sides, see Figure 4.2. The areas of these circles
are the two components of the hat’s split key.

Figure 4.2: A hat’s associated split key equals (f1, f2)

To prepare for the next proof, we establish the following lemma:

Lemma 3. Place two circles of combined area a in two corners of a triangle, like in Figure 4.3. Let w
be the length of the connecting side of the triangle. Now, define p; and p; to be the “projection
factors”, so that, when projecting circle a; down onto the connecting side, the distance between the
triangle’s corner and the far point of the projection is /a;p;. Note that these factors will be constant
for arbitrary circle areas. The two projections do not intersect if

w > \/a(p} + p3).

4 PACKING CIRCLES 25

Proof. Letw'(a1) = \/a1p1 + +/a — a1p2 be the combined width of both projections. This function

2
. . . p . . 2 2 .
has its global maximum at a; = IR and the maximum value is |/a(p] + p3). If w is at least as
large as this value, the two projections do never intersect. O

Vaipt \axp2

Figure 4.3: The circles’ projections do not overlap ifw > /a(p? + p3).

Lemma 4. Consider an (a,0)-hat with the associated split key F = (f1, f2), and call its left- and
right-angles « and B. For all (a, 0, F)-conjugated tuples (a1, b1) and (ay, b,), the following two shapes
can be packed into the hat:

m aright (a1, b1)-hat with a right-angle of « and
m aright (ay, by)-hat with a left-angle of B.

Proof. Place the hats’ tips at the bottom of the container hat, rotate their - and S-angles toward the
container’s matching angles and push them as far to the left/right as possible. Table 4.1 illustrates
how these packings looks like for different values of'a; and 4, and gives some informal reasoning
why they can always be packed.

This way of placing the two hats results in a valid packing if (1) the hats do not overlap each other
and (2) the hats fit into the hat individually. We are going to proove these two properties separately.

We first want to show that the hats do not overlap each other. If the hats’ projections onto the
container’s base do not overlap, we found a separating axis and can be sure that the hats do not
overlap, as well. Furthermore, because the hats’ incircles touch the rightmost part of the left hat’s
boundary and the leftmost part of the right hat’s boundary, it suffices to show that the projections
of the hats’ incircles onto the container’s base do not overlap.

We want to use Lemma 3 for this proof, so we need to make a statement about the projection
factors p;1 and p, in Figure 4.4: If the top angle is a right angle, we can see that \/ap; = x and
Vapa = y. So by the Pythagorean theorem, w? = (v/ap1)? + (v/ap2)?. If the top angle is more
obtuse, but the incircle’s center stays at the same x-coordinate (like the dotted variant in Figure 4.4),

26

;

Table 4.1: Hat-in-hat packings for different values of @y and a,.

1la

0.9a

0.7a

0.3a

0.5a

0.5a

0.57a

)

0.43a

0.7a

0.3a

0.9a

Jda

1.0a

When a; = a, the second hat is simply
rounded to a circle of area a. By definition,
this is the incircle of the container, so it can
be packed.

As a; gets smaller, the second hat gets less
rounded, but still enough so that it can be
packed. The other hat is a non-rounded
triangle, which fits beside the second one.

When a7 and a; have a ratio as specified by
the container’s associated split key, the two
hats are both non-rounded triangles, but
they can still be packed.

When a; gets smaller than specified by the
split key, it is now the first container which
is getting more rounded.

As a; approaches g, it is now the first hat
whose shape gets closer to a perfect a-circle.

By the same argument as before, this circle
can be packed.

4.1 HATS

4 PACKING CIRCLES 27

both \/ap; and \/ap; only get smaller, so for each hat, w? > (v/ap1)? + (v/apz)?, which is equivalent
tow > y/a(p? + p3). By Lemma 3, this means that the projections of the circles do not overlap,
which in turn means that the two hats do not overlap.

Vap

w
Figure 4.4: 1> 4+ r> < 1 holds for each non-acute triangle

The second property we need to show is that the hats fit into the container individually. Unfortu-
nately, this part of the proof’is going to be long and technical.

If a hat’s incircle is not larger than the incircle of the container hat’s side, it will fit into the
container without question because it is a subset of that side (like all the non-rounded hats in
Table 4.1). So let us assume a; > f;.

In this proof, we are going to use two different length-area ratios, which are illustrated in Figure 4.5.
The first one is d, which describes the ratio between the length of the triangle’s right leg and the
square root of the area of’its right incircle f;. Note that for all triangles similar to the right part of
the container triangle, this ratio between the length of this edge and the square root of the incircle’s
area will be constant. The second ratio, e, is the ratio between the length of the same right leg
and the square root of the incircle-area of the whole container triangle. Again, it is a constant for
triangles similar to the given container triangle. Note that, in preparation for a generalization later
in this chapter, we denote the triangle’s incircle by 0. From Figure 4.5 we can now observe that

e\/o = d./f;, which is equivalent to e = d/f;/o.

28 4.1 HATS

Figure 4.5: The ratios d and e are constant for all similar triangles.

Moving forward, in Figure 4.6, we display the situation when packing a hat into (without loss of
generality) the right leg of the container. f; is the relevant factor from the split key, 4; is the hat’s
incircle and b; represents the hat’s rounding.

Figure 4.6: Various measurements when packing a rounded hat.

The hat is placed in such a way that it will never overlap the bottom or the right leg of the
containing triangle, so it is sufficient to show that it does not overlap the left leg. We can tell from
Figure 4.6 that this does not happen if the length of the right side of the triangle the hat is based on
(dy/a;), minus the length of the right side of the (b;, 0)-triangle similar to the containers right side
(dv/b;), plus the length of the right side of the (b;, 0)-triangle similar to the container (ey/b;) is at
most the length of the container’s right leg (d+/f;). So the following condition has to hold:

d/a; —d\/b; +e/b; < dv/fi

As previously observed, e = d./f;/o:

4 PACKING CIRCLES 29

dy/a; —d\/b; +d\/fi/o\/b; < d\/F;

In our case, the incircle of the triangle has exactly the maximal area which we want to pack, so
0 = a. But even if 0 > g, the inequality is true if

dy/a; — d\/bi +dv/fi/a/b; < d\/;

We can also divide by d and factor out /b; to get:

Vai — (1= fila)V/bi < VFi)
Let j be the index of the other hat to be packed. We know (from the conjugatedness) that the
sum of both hats’ incircles does not exceed the total area 4, so a; +a; < a. Also, f; + f; > a4, as
demonstrated in Figure 4.7: In right triangles, f; + f, is exactly 4, because as its two halves are
similar to the large triangle, the two halves’ areas add up to the container triangle’s area, and the
ratio between the areas ofa triangle and its incircle are constant. When making the upper angle
more obtuse, but letting f; and f, stay the same, the incircle only shrinks (like the dotted variant in
Figure 4.7).

Figure 4.7: In non-acute triangles, f1 + f» > a.

Putting it together, by Theorem 1, our hat it is rounded by

biZai—fiujZai_fi;l—tli:ﬂi(ﬂ—fi)—fi(u—ai) :aai_fi
j

f, —fi a—fi a—fi

Insert that into Equation (1):

Vi = (1= VTa) a8 < VT

Then bring the subtrahend to the right and square both sides (both are positive):

30

4.1 HATS

0 < fi 2= VT (= VR
Subtract f; and divide by \/a; — f;:

2\/J7i(1 _a_/J;;'i/a)\/a (1 \/m)za \/a”i_—fifi

—fi <
Rearrange:

——(a—f) = (1= VF/a)a _2Vfi(1—/Fi/a)Va
vai—fi a— fi = Va—fi

Simplify:

—2fi _ 2/fia —2f;
Vai fz ﬁ SN

Then multiply with \/a — f;:

—2Vha-2fi 2Vfa-2fi p—
Iy N s A A

Finally, divide by the fraction to get:

\/tli—fig\/ﬂl—fl‘ <~ ai—figa—fi <~ a;<a

From the conjugatedness we know that 4; is never larger than a4, so Equation (1) is true and the
hat always fits into the container. This completes the proof of Lemma 4. O

Until now, the container was always an (a,0)-hat, which is essentially a non-rounded triangle
with an incircle of a. The next lemma extends this idea to hats which are actually rounded. It is
identical to Lemma 4, except that the rounding of the container hat is no longer 0, but b.

Lemma 5. Consider an (a,b)-hat with the associated split key F = (f1, f2), and call its left- and
right-angles « and B. For all (a, b, F)-conjugated tuples (a1,b1) and (a2, bp) with a1 + a, < a, the
following two shapes can be packed into the hat:

m aright (a1, by)-hat with a right-angle of w and
m aright (ay, by)-hat with a left-angle of B.

Proof. Lemma 4 tells us that this theorem is true for b = 0. Now, the container’s corners can
be rounded to the radius of a b-circle, and we need to show that the two hats from the previous
construction still fit inside. But all of the two hat’s corners are also rounded to (at least) the same
radius (see Theorem 1), so they will never overlap the container, see Figure 4.8. O

4 PACKING CIRCLES

0.7a
0.3a

0.7a
0.3a

Figure 4.8: Rounding all hats’ corners by the same radius does not affect the packing,

With these preparations, we can finally apply Split Packing to hats:

Theorem 5. Given an (a, b)-hat, all circle instances with a combined area of at most a and a minimum circle
size of at least b can be packed into that hat.

Proof. We proof by induction that we can pack each C € C(a, b) into the hat:

If C only consists of a single circle, it can be packed into the hat, as it is at most as big as the hat’s
incircle.

Now assume that for any 0 < b < g, any (a, b)-hat could pack all circle instances into C(a, b) with
at most n circles. Consider a circle instance C € C(a, b) containing n + 1 circles. Definition 13 tells
us how to compute the split key F. Then we know from Theorem 1 that Spr1T will partition C into
two subinstances C; € C(ay,b1) and C; € C(ap, by), whose parameters are (a, b, F)-conjugated. As
SPLIT can never return an empty instance (except for |C| = 1, a case which we handled above), each
subinstance will contain at most # circles. We know from Lemma 5 that, for all pairs of (a,b, F)-
conjugated tuples, we can find two hats with matching parameters which fit into the container
hat. By assumption, these hats can now pack all instances from C(ay, b;) and C(ay, by), respectively,
which means that they can especially also pack C; and C,. If we then pack the two hats into the
container, we have constructed a packing of C into the container hat.

By induction, we can pack each C € C(a, b) into the (a, b)-hat. O

31

32

4.3 ISOSCELES TRIANGLES

4.2 Non-acute triangles

As a non-acute triangles is only a special case of a hat, this section is will be pleasantly short.

Theorem 6. Given a non-acute triangle with an incircle of area a, all circle instances with a combined area
of up to a can be packed into the triangle, and this bound is tight. See Figure 4.9 for some example packings.
Expressed algebraically, for a triangle with side lengths a, b, and c, the critical density is

\/—(”—b—C)(ﬂ+b—C)(”_b+c)n < 53.91%.

(a+b+c)s

Proof. The triangle is an (a,0)-hat, which by Theorem 5 is a C(a)-shape.

On the other hand, a single circle of area a + ¢ cannot be packed, as the incircle is by definition
the largest circle which fits into the triangle.

As for the algebraic formulation of the critical density, the area of the triangle can be calculated
using Heron’s formula:

A(a,b,c) :== \/s(s —a)(s —b)(s—c) withs = %b—kc
It is also known that the radius of the incircle of this triangle is
R(a,b,c) := A(a,sb,c) with s = %b—i—c,

so the incircle has an area of

a+b—c)(c+a—-b)(b+c—a)
4(a+b—+c)

Finally, the ratio between the areas of the circle and the triangle can be calculated to be

I(a,b,c) = tR(a, b,c)2 = (

I(a,b,c) _ \/—(u—b—c)(a—l—b—c)(a—b—i—c)n
(a+b+c)3

4.3 Isosceles triangles

Split Packing can pack with critical density not only into non-acute triangles, but also into isosceles
triangles, as long as its two symmetric sides are not longer than the base. In this sense, it works for
all triangles inbetween a right isosceles triangle and an equilateral triangle.

Definition 14. A thick isosceles triangle is an isosceles triangle whose legs are at most as long as its
base, but whose top angle is at least 7. Examples are shown in Figure 4.10.

4 PACKING CIRCLES 33

Figure 4.9: Example packings of various circle instances into a right triangle produced by Split Packing.

34

4.3 ISOSCELES TRIANGLES

Figure 4.10: Range of considered isosceles triangles.

To prove the worst case for these triangles, we first make a statement about a triangle’s twincircles:

Lemma 6. Two touching equal circles, placed in the corners connected by a triangle’s longest side,
are the triangle’s twincircles, meaning there are no two larger equal circles which can be packed.

Proof. Call the circles’ radius . When eroding the triangle by r, the remaining area is a triangle
similar to the original one, whose longest side has a length of 2r, see Figure 4.11. This means that
when eroding the triangle by r + ¢, the longest side of the remaining area must be shorter than 2r.
But to pack two circles with radius r + ¢, their centers need to be placed at least » 4 € away from the
triangle’s boundary and at least 2r + 2¢ away from each other. The construction shows that this is
not possible. O

Figure 4.11: Two circles larger than these cannot be packed.

In the previous section, the target area 4 which we wanted to pack always was the area of the
triangles incircle. For thick isosceles triangles, the twincircle area is smaller than the incircle area,
which means it will not always be possible to pack the area of the incircle. In this section, we will
argue that we can always pack the twincircle area into thick isosceles triangles.

Definition 15. The split key of a thick isosceles triangle is (1,1).

Lemma 7. Consider a thick isosceles triangle with a twincircle area of 4 and call its symmetric
angles a. For all (4,0, (1,1))-conjugated tuples (a1, b1) and (az, by), the following two shapes can be
packed into the triangle:

m aright (a1, b1)-hat with a right-angle of « and
m aright (ap, by)-hat with a left-angle of a.

Proof. See Figure 4.13 for example packings for different a; and a;.

4 PACKING CIRCLES 35

First, we show that the hats do not intersect each other: In any isosceles triangle, the projection
factors for both sides, p; and p, are equal. So in Figure 4.12, we construct the width of the triangle’s

base to be 2,/§p1 = \/ 2ap3 = \/ a(p? + p3). By Lemma 3, this means that the hats do not overlap.

Vva/2p; Va/2p;
\/2ap3

Figure 4.12: The width of an isosceles triangle is |/2ap?.

Second, we show that the hats do not intersect the container. We are going to re-use the proof
from Lemma 4 here. On page 29, we showed that the hats do not overlap the container if certain
conditions are met. These conditions are also true here:

® gy +ay < a, the hat’s incircles add up to at most a because of the conjugatedness of the tuples.
® fi + f; > a, in this case, the incircle-areas of the triangles sides are equal to a by assumption.

® 0 > g, meaning that the triangles incircle is at least as large as the area of the twincircles. This
can be demonstrated like in Figure 4.7 on page 29, but in the reverse direction: For a right
isosceles triangle, the twincircle area a is exactly equal to the triangle’s incircle. Leaving the
twincircles in place, but increasing the top angle, the incircle only gets larger.

Thus, also in this case, the hats do not overlap the container. This concludes the proof. O

36 4.3 ISOSCELES TRIANGLES

0.5a 0.5a /ﬁ 0.45a /f 0.4a
074 1.0a
0.3a 0.2a

Figure 4.13: Packing two hats into an equilateral triangle.

Theorem 7. Given a thick isosceles triangle with a twincircle area of a, all circle instances with a combined
area of up to a can be packed into the triangle, and this area bound is tight. See Figure 4.14 for some example

packings. Expressed algebraically, for a triangle with legs of length b and a base of length c, the critical density
is

c—2b+V4b?2 — c2)?m
2cv/4b? — 2

Proof. By Lemma 7 and the Split Packing Theorem, the triangle is a C(a)-shape.
In Lemma 6, we argued that any two equal circles larger than the twincircles cannot be packed.
We use Heron’s formula again to calculate a critical density of

21(5,b,h) (c—2b+4b2 —c2)*n

sh 2cvV/4b?% — c?

48.60% < (< 53.91%

4 PACKING CIRCLES 37

Figure 4.14: Example packings of various circle instances into an equilateral triangle produced by Split
Packing.

38 4.4 THE PROBLEM WITH ACUTE TRIANGLES

4.4 The problem with acute triangles

A class of triangles for which we could not prove the critical density are general acute triangles. The
problem is that the condition for Lemma 3 is not met, which means that the two hats may overlap:

0.6a
0.4a

/

Figure 4.15: For general acute triangles, the two hats may overlap.

We worked under the following assumption:

Conjecture 1. A circle instance can be packed into a triangle if the circles’ combined area does not
exceed the triangles incircle or twincircle, whichever is smaller.

If this conjecture is true, surely there are strategies which can pack into acute triangles with
critical density. For example, we attempted to split the circle instance into four subinstances using a
slightly modified SpriT algorithm, and then to pack four hats into the container, like in Figure 4.16.
Again, this is motivated by the observation that, when splitting each circle top-down into four
equal circles, this strategy always works because the triangle is recursively divided into four similar
triangles.

Figure 4.16: Packing four hats into an acute triangle.

Unfortunately, this strategy fails for some instances, as depicted in Figure 4.17. For this instance,
the largest group, consisting of a single circle, cannot be packed if any of the smaller groups is

4 PACKING CIRCLES

packed into the top or the left corner, because the remaining free space is not wide enough for the
circle. Other strategies or a case distinction would need to be considered.

Figure 4.17: This strategy does not work for a container with a right-angle of {j, incircle 1 and the circle
instance {0.55,0.15,0.15,0.15}.

4.5 Rectangles

Some of our main results concern the packing of circles into a square. We will cover that packing
problem in the next chapter, along with some generalizations on the objects which are to be packed,
which is why we do not repeat it here. Instead, we first turn toward rectangles.

Split Packing can be used to pack circles with critical density into rectangles. The basic idea is to
divide the rectangle along a diagonal, and pack the subinstances produced by SprIT into these two
halves. If one group gets larger than half; it gets rounded enough so that it still works.

0.5a 0.6a 0.7a
0.5a 0.4a 0.3a
0.8a 0.9a\ 1.0a
0.2a 0.1a /

Figure 4.18: Hat-in-rectangle packings for different values of a1 and a5.

At this point, we do not know how to handle all rectangles, and this has to do with the differ-
ent classes of worst-cases which appear when packing circles into rectangles of diftferent ratios.
Figure 4.19 shows several examples. At the top, we show the conjectured worst-case instance. For
squares, we already discussed the worst case—it consists of the square’s twincircles, the two largest
circles which can be packed into the square.

39

40

4.5 RECTANGLES

e®
@e®

Figure 4.19: Rectangles of different aspect ratios. Top: Their conjectured worst-case instances. Bottom: The

~ 1.5607

incircles of their halves. Aspect ratios between 1 and ~ 1.5607 are the only ones where the area
of the worst-case instance is larger than the area of the two circles inscribed in the halves.

For rectangles with a slightly larger aspect ratio (like 1:1.3), we conjecture that the worst-case
instance still consists of the rectangle’s twincircles, but we do not know how to pack this area using
Split Packing, because when cutting the rectangle along the circles’ tangent, the resulting pieces
are not triangular. At this point, we do not know how to deal with these kinds of quadrilaterals
recursively.

As the aspect ratio gets even larger, at some point the twincircle area gets larger than the incircle
of the rectangle, whose diameter is as long as the rectangle’s smaller side. Obviously, any circle
larger than this incircle cannot be packed, so from this point forward, the worst-case instance of’
these “long” rectangles will be their incircles.

At the bottom of Figure 4.19, we divided all rectangles along their diagonal, and inscribed circles
into the resulting halves. We will show that we can pack circles with critical density into a rectangle
if the area of those two circles is at least as large as the worst-case area: We know from the previous
sections that we can pack right hats with incircle density. It is left to show that, if one of the two
hats should get larger than the other one, they both can still be packed.

What is the aspect ratio of the rectangle where the combined area of the two circles incribed in
the halves is exactly equal to the incircle area? In Figure 4.20, we see that the area of the incircle is
A=)z

4 PACKING CIRCLES

Figure 4.20: Constructing the case where A = 2B.

The proof of Theorem 6 on page 32 discusses how to use Heron’s formula to algebraically find
the area of'a triangle, given its side lengths. In our case, A = 2B is equivalent to

T maw(h 4+ w — Vh? + w?
“h? = 2I(h,w, V/h? +w?) =
4 () h+w+ Vh? + w?

and this equation this is true for w = %ﬁh ~ 1.5607h. This means that all rectangles whose
side ratio is at least this large can be packed with critical density, simply by using the split key
F = (1,1) and by placing two right hats in the rectangle.

Lemma 8. Consider a rectangle whose longer side w is at least # ~ 1.5607 times as long as its
shorter side 1 and let a be the area of its incircle. Any two (4,0, (1,1))-conjugated right hats similar
to the two halves of the rectangle when cutting diagonally from corner to corner can be packed into
the rectangle.

Proof. See Figure 4.18 for some example packings. The proof works analogously to the proof of
Lemma 4. O

Theorem 8. Given a rectangle whose longer side w is at least %ﬁ ~ 1.5607 times as long as its shorter
side h, let a be the area of its incircle. All circle instances with a combined area of up to a can be packed into the
rectangle, and this area bound is tight. See Figure 4.21 for some example packings. Expressed algebraically, the

. e th
critical density is 7.

41

42

4.5 RECTANGLES

oG

Figure 4.21: Example packings of various circle instances in a rectangle with aspect ratio 1:1.57 produced by
Split Packing.

Proof. By Lemma 8 and the Split Packing Theorem, the rectangle is a C(a)-shape.
The a-circle’s diameter is equal to the rectangle’s smaller side, so it is clear that any larger circles

cannot be packed.
The critical density is the ratio of the circle’s and the rectangle’s area, which can be calculated to

be hy\2
7'((5) - 7th o
oh — dw < 50.33%.

5 Packing rubies

In the previous chapter, we showed how Split Packing can be used to pack circular objects into
triangles and rectangles. As we explored generalizations of Split Packing during the creation of this
thesis, we usually tried to find additional container shapes for which we could use Split Packing to
pack circles with up to critical density.

But at one point, we decided to try whether we could vary the “other half” of packing problems:
The objects. We rarely had thought of packing objects other than circles.! We were surprised to find
out that, when we allowed to rotate objects, we could also use Split Packing to pack squares into a
square container with up to critical density! Shortly after, we discovered that we could also use it to
pack octagons with up to critical density. Both modified packing problems could be solved with
only a very small modification of the algorithm.

As we know now, the reason why we can pack circles, squares, as well as octagons, is that all these
shapes are subsets of the very special shape shown in Figure 5.1. We call this shape ruby, because it
looks like a cut gemstone from the side:

Figure 5.1: The “ruby” shape and its contained circle, square and octagon.

In this chapter, we will show how to pack rubies into squares and isosceles right triangles with
up to critical density. As corollaries, we get critical-density packing algorithms for circles, squares,
and octagons for these containers for free! In fact it turns out that, if you are given a set of objects,
no matter what their shape is, if you can enclose them in rubies so that the combined area of the
rubies does not exceed the critical density, then you can pack the shapes into these containers.

LAfter all, the preliminary title of this thesis was Circle Packing Algorithms!

5.1 GEMS AND RUBIES

5.1 Gems and rubies

For this generalization, we need another new shape, which has a similar function as previous
chapter’s hats. Our ruby shape has a very distinct way its corners are cut off. We generalize this
cutoff to get to a family of shapes which we call gems?:

Definition 16. For each 0 < b < g, an (4, b)-gem is an isosceles right triangle with an incircle of
area a, whose acute corners are cut off like shown in Figure 5.2: Each cut forms an angle of 277 with
the triangle’s boundary, and the distance of each cut to the triangle’s original corner is

(2+V®@vv§—1—ﬂvﬁ

c(b) := b ~ 0.6078/b.
2(vV2-1)m

Figure 5.2: An (a,b)-gem.

Definition 17. A gem’s associated split key is (1, 1), as usual for symmetric shapes.

For the following proofs, we need to know a gem’s dimensions in detail. Consider an (g, b)-gem
and let r = |/Z be the radius of its incircle. By construction in Figure 5.3, the hat has

m cut-width ¢(b) = (2+\/§)2((2 \}2 ‘/15)_1_1) /b (by definition),
-1

m diagonal D(a) = v2(rv2+7r) = (2+ v2) /%,
m width w(a,b) = 2(rv2+7) —2c(b) = (2+2v2)/Z — 2¢(b), and
® corner-width W(a,b) = (2+2v2)\/Z — ¢(b).

2A ruby is a special gem, get it?

5 PACKING RUBIES

w(a,b)
Figure 5.3: Dimensions of an (a,b)-gem.

The definition of a gem is designed so that we get our ruby shape exactly for a = b:
Definition 18. We call an (4, 4)-gem an a-ruby.

An a-ruby contains the following shapes, see Figure 5.2:

m 3 circle of area a,

m a square of area %fﬂ ~ 0.92764a, and

m aregular octagon of area M%a ~ 1.0548a.

This is because if the circle’s radius is r = /%, then the square has an edge length of (1 + %)r

so its area is (1 + /2 + 3)r%. Regular n-gons with an apothem? of 7 have an area of nr? tan(Z),
which, for n = 8, amounts to 8r2(v/2 — 1).

Figure 5.4: An a-ruby and its contained circle, square and octagon.

3The apothem is the distance of the polygon’s center to its sides.

45

46

5.1 GEMS AND RUBIES

A ruby itself can be calculated to have an area of Sy 2(7+5\/§n)_3(7+4\/§) a ~ 1.4225a.
We will also use a modified version of gems and rubies for which only one corner is cut off. We
will call these gems sharp:

Definition 19. A sharp (a,b)-gem is an isosceles triangle where only one corner is cut off like in the
definition of a gem, see Figure 5.5. A sharp ruby is a sharp (a,a)-gem.

Figure 5.5: A sharp ruby.

A sharp ruby is a superset of a regular ruby with the same parameters and can be calculated to

4/2(7+5v2)-5v2-9
= a ~ 1.6388a.

From this point forward, we will no longer pack circles, but (regular and sharp) rubies. To simplify

have an area of

talking about these instances, we make the following definition:

Definition 20. A ruby instance is defined excactly like a circle instance (see Definition 4), except that
the real numbers now define the areas of the rubies’ incircles. R is the set of all ruby instances,
R(a,b) is defined analogously. Similarly, we call the set of all sharp ruby instances S, and define S(a, b)
analogously.

One way to think about ruby instances is that they consist of the rubies “built around” the circles
of a circle instance.

Lemma 9. Any two (4,0, (1,1))-conjugated sharp gems can be packed into a sharp (a,0)-gem.

Proof. Assume without loss of generality that the two gems are a sharp (a1, b1)-gem and a sharp
(ap,b2)-gem with a; > ap, meaning that we always swap the larger gem to the left. Also, let us
normalize 4 to 1 to make calculations easier. The proofs hold for all 4, one just needs to multiply all
areas with a and all lengths with /a.

Again, we will show that we can always place the gems so that (1) they do not overlap each other
and (2) they do not overlap the container. See Table 5.1 for an overview of the different cases, along
with some more informal reasoning.

The smaller gem is always placed so that its tip touches the bottom of the container gem and its
left corner fits into the containers right corner. By assumption, its incircle is smaller than 1/2, so it

5 PACKING RUBIES

Table 5.1: Gem-in-gem packings for different values of a1 and a5.

0.5 0.5

0.666
0.334

b o

fd A

The two gems are placed so that their tips touch
the container’s base and point toward each other.
We assume a; > % and normalize a; + a4, to 1.

They are then pushed as far to the left/right as
possible. As a; grows, the gem becomes “cut-off”
enough so that it does not overlap the container.

As soon as a1 > %, we know from Theorem 1 that
b1 = a1, so the gem takes the form of'a sharp ruby
from this point forward. We display it in a darker
shade here.

When a; = 2v/2 — 2, the ruby touches the con-
tainer’s right leg.

So when the ruby gets larger than that, it has to
be rotated so that its tip points up. That these
two positions exactly fit is the defining property
of the ruby shape.

In this orientation, it can then grow without over-
lapping the container and the smaller gem.

When a; = 1, the ruby touches all sides of the
container triangle.

47

48

5.1 GEMS AND RUBIES

will fit inside the right half of the container and thus never overlap the container’s boundary. For
the larger gem, there are three cases:

Casel When a1 < %, we know from Theorem 1 that b; > 2a; — 1. We have to show that the
corner-width of our gem does not exceed the diagonal of the container:

W(a1,2a1 — 1) S D(l)

>

2 2)(2 2-1-1 2
— (2+2\/§),/a—1—(TV2)(2VV2)\/2a1—1§ i
T 2(vV2-1)m v
Expressions of the form f\/x — gy/2x — 1 have their only extremum at x = %ﬁzgz). This
point turns out to be a global minimum for f,¢ > 0. In our case, this minimum point is at

a; = 1+5ﬁ+§5v 1+5V2 1, 0.5553. As we can check our inequality to be true for a; = § as well as for

a; = %, this means that it always holds between those two values.

Case2 Intherange 2 < 4y < 21/2 — 2, we know from Theorem 1 that b; = a4, essentially making
the gem into sharp a ruby. We have to show that the corner-width of the ruby is always smaller than
the diagonal of the container:

W(a1,a1) S D(l)

But in the range for a; specified above, this is true:

W(al,al) <1 _%)2 \/> < (1 _t/{»)z \/2\6— = 21_/%/5 = D(l)

In both Case 1 and Case 2, the two gems do not overlap each other because the projections of’

their incircles do not overlap. See Lemma 7 for a proof.

Case 3 Fora; = 2v/2 — 2, the ruby touches the containers right leg. When 2V2 -2 <ay <1,it
is no longer possible to place the gem like before without overlapping the container. In this case,
we rotate it so that its bottom touches the bottom of the container gem and push it as far left as
possible.

This is actually the defining property for the shape of the ruby: The cut-off'is exactly so large that,
when the growing ruby touches the container, the remaining space left over by the smaller gem is a
(symmetric) kite, so that the ruby can be rotated.

In this orientation, it will never overlap the container: It can be enclosed in a (non-cut) (a1,0)-gem,
with the same rotation as the container gem, and a; < 1, so our ruby always fits inside the container
gem.

To show that the ruby does not overlap the smaller gem, we have to show that the following
inequality holds for 21/2 — 2 < a; < 1: The corner-width of the ruby, added to the diagonal of the
small gem, must not exceed the container’s width:

5 PACKING RUBIES 49

W(ay,a1) + D(1—a1) < w(1,0)

(1++2)} 24 V2 o 2242

Expressions of the form f/x + ¢1v/1 — x have their only extremum at x =

fZ
f2+g2
turns out to be a global maximum for f,g > 0. In our case, the maximum is at % ~ 0.5469,
and we have equality for a; = 2v/2 — 2 ~ 0.8284. If a; gets larger than that, the left hand side
of the equation will only get smaller, so that the inequality holds. This concludes the proof of

. This point

Lemma 9. O

Like with hats, “rounding” the container gem to a sharp gem with larger cut-off does not affect
the packing properties:

Lemma 10. Any two (4, b, (1,1))-conjugated sharp gems can be packed into a sharp (4, b)-gem.

Proof. Lemma 9 tells us that this theorem is true for b = 0. For b > 0, we flip the containers cut-oft
corner to the right, and also flip the smaller gem’s cut-off corner so that it points to the right.
Because the cut-off has the same shape, the inner gems will not overlap the container. O

Theorem 9. Any sharp ruby instance S € S(a, b) can be packed into a sharp (a, b)-gem.
Proof. By Lemma 7 and the Split Packing Theorem. O

As a minor corollary, since rubies are subsets of sharp rubies of the same incircle, we can state
the same property for regular rubies.

Theorem 10. Any ruby instance R € R(a, b) can be packed into an (a, b)-gem.

Proof. This follows analogously to the reasoning with sharp gems. In this case, when cutting off the
corners of the container gem, all corners of the contained gems are cut off by the same value, so
they still fit inside. O

50

5.2 ISOSCELES RIGHT TRIANGLES

0.65
0.35

0.65
0.35

Figure 5.6: Cutting one corner of each gem by the same value does not affect the packing.

5.2 Isosceles right triangles

As isosceles right triangles are simply non-rounded sharp gems, this is again going to be a short
section.

Theorem 11. Given an isosceles right triangle with an incircle of area a, all sharp ruby instances with a
combined incircle area of up to a can be packed into the triangle, and this area bound is tight. See Figure 5.7 for
some example packings. Expressed algebraically, the critical density is

44/2(V2 = 1) +3v2 — 7 ~ 88.34%.

Proof. The triangle is a sharp (a,0)-gem, and by Theorem 10 we can pack any sharp ruby instance
S € S(a) into such a gem.

A sharp ruby with an incircle area of more than a cannot be packed, as its incircle would be larger
than the triangle’s incircle.

The critical density can be calculated using the area of sharp rubies mentioned above. O

5 PACKING RUBIES 51

Py
L4

Figure 5.7: Example packings of various sharp ruby instances in an isosceles right triangle produced by Split
Packing.

We can make the following observation here: Given an isosceles right triangle with an incircle area
of a, and some arbitrary objects, if one can enclose each object in a sharp ruby, and the combined
incircle area of these rubies is not larger than 4, then the objects can be packed into the triangle.
This is a very general result which can be used to directly solve some other interesting packing
problems:

Corollary 1. Given a right isosceles triangle with an incircle area of a, the following object instances can be
packed into the triangle:

m all circle instances with a combined area of up to a,
m all octagon instances with a combined area of up to 8\[%41 ~ 1.0548a, and

m qll square instances with a combined area of up to %ﬁa ~ 0.9276a, which is also exactly half of the
triangle’s area.

All of these area bounds are tight. See Figure 5.8 for some example packings.

Proof. As demonstrated above, the three shapes are subsets of rubies in these specific area ratios. To
pack them, enclose all of them in the smallest possible sharp ruby. The combined incircle area of

52

5.3 SQUARES

these rubies will now be at most 2. We then know from Theorem 7 that we can always pack these
rubies.

The tightness of these bounds is obvious for circles and octagon. For squares, the tightness
follows from the result by Gobel [15] that the largest two squares that can be packed (with rotation)
into a square are quarter-squares. This implies that, when cutting the square along its diagonal,
there is no larger square that can be packed into an isosceles right triangle than one with half'the
triangle’s area. O

Figure 5.8: Example packings of ruby-, circle-, octagon-, and square instances in an isosceles right triangle

produced by Split Packing,

5.3 Squares

Finally, we turn to square containers. Having established (4, b)-gems as R(a, b)-shapes, to argue
about the packing properties of squares is going to be relatively straightforward. We first argue
about the worst-case instance for squares:

Lemma 11. Two touching equal circles, packed into opposing corners of a square, are the squares
twincircles, meaning that there are no two larger equal circles which can be packed.

Proof. 'This can be proven similarly like in Lemma 6: Let r be the radius of these circles. When
eroding the square by r, the result is a square with a diagonal of 2r. When eroding by a larger radius
1 + ¢, the diagonal will be smaller than 2r. But the centers of the two circles need to be placed at least
2r + 2¢ away from each other, and additionally need a distance of at least r + ¢ from the square’s
boundary. We see that both constraints cannot be satisfied at the same time. O

Lemma 12. The twincircles of a square with area a have a combined area of

T
———a ~ 0.5390a4.
342v2

5 PACKING RUBIES

Proof. We can construct the twincircles’ radius r as seen in Figure 5.9:

ro_ _ a
ATV T A

So, the combined area of the twincircles is

2r+2

a

22 =27 = i a.
444242 3422

Figure 5.9: Constructing the twincircles’ radius r.

Note that in the next lemma, we no longer pack sharp gems, but regular gems, whose two corners
are cut off. The reason it will become clear in Figure 5.10: A large sharp (a,0)-ruby cannot be packed
into the square.

Lemma 13. Any two (4,0, (1,1))-conjugated gems can be packed into a square with twincircle area
a.

Proof. Place the tips of the gems in two opposing corners of the square, like in Figure 5.10. This
placement constitutes a valid packing because (1) the gems fit into the square individually and (2)
the gems never overlap. This can be proven algebraically in exactly the same fashion as in Lemma 9,
where we proved a similar statement about packing into gems. O

53

54

5.3 SQUARES

0.5

0.5

0.48

0.52

0.45

0.55

04

0.6

0.7

0.8

0.3
0.2 01

Figure 5.10: Gem-in-square packings for different values of a1 and a;

Theorem 12. Given a square with a twincircle area of a, all ruby instances with a combined incircle area of
up to a can be packed into the square, and this area bound is tight. See Figure 5.11 for some example packings.
Expressed algebraically, the critical density for the rubies’ areas is

8\/2(V2 — 1) +6V2 — 15 = 76.67%.

Proof. By Lemma 13 and the Split Packing Theorem, the square is a R(a)-shape.

Two rubies with a combined incircle area of more than a will have incircles which are larger than
the square’s twincircles. As shown in Lemma 11, those cannot be packed, which means that the
rubies cannot be packed, as well.

The critical density can be calculated using the area of the rubies’ incircles (see Lemma 12). [

At this point, we can make a similar observation like for isosceles right triangles: Given a square
with a twincircle area of a, and some arbitrary objects, if one can enclose each object in a ruby, and
the combined incircle area of these rubies is not larger than 4, then the objects can be packed into
the square. This is a very general result which can be used to directly solve some other interesting
packing problems:

Corollary 2. Given a square with a twincircle area of a, the following object instances can be packed into the
square:

m qll circle instances with a combined area of up to a,

m all octagon instances with a combined area of up to M%a ~ 1.0548a, and

m all square instances with a combined area of up to %ﬁa ~ 0.9276a, which is also exactly half of the
square’s area.

All of these area bounds are tight. See Figure 5.12 for some example packings.

5 PACKING RUBIES 55

Figure 5.11: Example packings of various ruby instances in a square produced by Split Packing.

56

5.3 SQUARES

Proof. As demonstrated above, the three shapes are subsets of rubies in these specific area ratios. To
pack them, enclose all of them in the smallest possible ruby. The combined incircle area of these
rubies will now be at most a. We then know from Theorem 12 that we can always pack these rubies.

The tightness of these bounds for circles was shown in Lemma 12. For the same reason, two
octagons with larger incircles cannot be packed: Their incircles would overlap, which means that
the octagons themselves would overlap. For squares, the fact that the largest two squares that can be
packed into a square (with rotation) are two quarter-squares was shown by Gébel [15]. O

Note that the result that you can pack all sets of squares with a density of up to 1/2 is already
known, even without rotations, as it can be done with Moon & Moser’s Shelf Packing approach [34].
For circles and octagons, to our knowledge, this is a new result.

5 PACKING RUBIES 57

&0

i

Figure 5.12: Example packings of ruby-, circle-, octagon-, and square instances in a square produced by Split

Packing.

6 Future work

We see many opportunities to apply the techniques behind Split Packing in the context of other
packing and covering problems.

In this thesis, we mainly considered triangular and square containers. It would be interesting to
see whether the Split Packing approach could be adapted to even more container types, like circles,
ovals, regular polygons, or generalized quadrilaterals. For some of these container types, even the
worst-case instance does not seem obvious. For circular and “almost square” rectangular containers,
we assume the worst cases would again be their twincircles, see Figure 6.1, but it is unclear how to
deal with the resulting shapes when cutting along the circles’ tangent: Compared to triangular and
square containers, these shapes cannot be split into self-similar pieces. It is also possible that the
depicted instances are not the actual worst cases.

Figure 6.1: Assumed worst-case instances for a circle and a near-square rectangle.

Also, the problem of finding the critical density for packing into acute triangles is still open. See
Section 4.4 for a discussion on why the Split Packing approach does not directly work for acute ones.
A strategy for packing acute triangles with critical density, combined with the results of this thesis,
would give an elegant, general result for all triangles.

Instead of packing circular, square, and octagonal objects, more object types could be considered,
like ovals, rectangles, or even more general convex objects. For these modified problems, again, it
does not seem obvious what the worst-case packings would look like.

For long rectangles (and long containers in general), in Section 4.5 we discussed that the maximally
packable area is limited by the relatively small height, making the problem rather trivial. It would
be a more interesting problem to require a maximum object size: What is the largest a so that all
circle instances with a combined area of at most 4, each of which have a diameter not larger than a
rectangle’s smaller side, can be packed into that rectangle?

The Split Packing method as described in this thesis is a strictly offline approach, as the greedy
splitting requires sorting the complete input instance, and then proceeds in a top-down fashion. It

60

would be interesting to study to which extent the obtained results could be replicated in an online
situation. The best algorithm that packs squares into a square in an online fashion is currently by
Brubach [6] and gives a density guarantee of % As mentioned in Section 2.1, we can directly use
this algorithm to pack circles into a square in an online situation with a density of {j ~ 0.3142.
It would be particularly interesting to see whether some form of online Split Packing would give
better results.

Our original motivation stemmed from origami design. When only packing circles, the resulting
origami structures resemble arbitrary stars. When one wants to design general tree-shaped structures,
it is necessary to introduce separating pathways between the circles, a technique called circle/river
packing, pioneered by Lang [26]. A packing scheme like Split Packing seems promising because it
often introduces gaps inbetween two subgroups anyway. At this point, we can establish a constant-
factor approximation for perfectly symmetric binary trees (see Figure 6.2), but we do not know how
to approximate the paper size needed for crease patterns of general trees.

Ned

TN

Figure 6.2: A folding of the tree on the left can be realized by a crease pattern based on the circle/river packing

on the right.

It seems like a natural extension to apply Split Packing to three-dimensional packing problems.
For example, one could try to pack spheres into a cube using a Split Packing approach. Unfortunately,
this does not directly seem to work out: Assuming the worst case are two equally sized spheres
packed into opposite corners of the cube, one would like to be able to cut the cube along the spheres’
tangential plane. This results in two shapes as depicted on the right in Figure 6.3, but it is not
possible to fit two quarter-spheres into each of these polyhedra. Still, any extensions regarding
three dimensional problems would be notable.

6 FUTURE WORK

”@ 3

Figure 6.3: Left: Assumed worst case for packing spheres into a cube. Right: Two quarter-spheres do not fit
in a half.

Instead of packing circles into containers, one could ask a question which is in some sense the
opposite problem: What is the smallest area so that we can always cover the container with circles
of that combined area? For example, if we want to cover an isosceles right triangle, and restrict
ourselves to at most two circles in our input instance, the area of a circle whose diameter equals the
triangle’s hypotenuse is sufficient, see Figure 6.4. It would now be necessary to show that the area of
the left circle is always enough to cover the quadrilateral on the left, and it does not seem trivial to
find an argument for that.

S

Figure 6.4: An isosceles right triangle can always be covered by two circles with a combined area of its excircle.

61

Bibliography

[1]

[10]

[11]

[12]

[13]

B. Addis, M. Locatelli, and F. Schoen. “Disk Packing in a Square: A New Global Optimization
Approach”. In: INFORMS Journal on Computing 20.4 (Nov. 2008), pp. 516-524. 1sSN: 1526-5528.
DOI: 10.1287/ijoc.1080.0263.

Ernesto G. Birgin and Jan M. Gentil. “New and improved results for packing identical unitary
radius circles within triangles, rectangles and strips”. In: Computers & Operations Research 37.7
(July 2010), pp. 1318-1327. 1ssN: 0305-0548. por: 10.1016/j.cor.2009.09.017.

Ernesto G. Birgin and F. N. C. Sobral. “Minimizing the object dimensions in circle and sphere
packing problems”. In: Computers & Operations Research 35.7 (2008), pp. 2357-2375.

David W. Boll, Jerry Donovan, Ronald L. Graham, and Boris D. Lubachevsky. “Improving dense
packings of equal disks in a square”. In: The Electronic Journal of Combinatorics 7.1 (2000), R46.

Paul Bourke. Random space filling tiling of the plane. July 2011. urL: http://paulbourke.net/
texture_colour/randomtile/.

Brian Brubach. “Improved Bound for Online Square-into-Square Packing”. In: Approximation
and Online Algorithms. Springer, 2014, pp. 47-58.

Ignacio Castillo, Frank J. Kampas, and Janos D. Pintér. “Solving circle packing problems by
global optimization: numerical results and industrial applications”. In: European Journal of
Operational Research 191.3 (2008), pp. 786-802.

Hai-Chau Chang and Lih-Chung Wang. “A Simple Proof of Thue’s Theorem on Circle Packing”.
In: arXiv preprint arXiv:1009.4322v1 [math.MGJ (Sept. 22, 2010). arXiv: 1009.4322v1 [math.MG].

Erik D. Demaine, Sindor P. Fekete, and Robert J. Lang. “Circle Packing for Origami Design
is Hard”. In: 5th International Conference on Origami in Science, Mathematics and Education. AK
Peters/CRC Press. 2011, pp. 609-626.

Laszl6 Fejes Téth. “Uber einen geometrischen Satz”. In: Mathematische Zeitschrift 46.1 (Dec.
1940), pp. 83-85. DoT: 10. 1007/BF91181430.

Juan J. Flores, Jose Martinez, and Felix Calderdn. “Evolutionary computation solutions to the
circle packing problem”. In: Soft Computing (Feb. 2015). 1ssN: 1433-7479. por: 10.1007/s00500-
015-1603-y.

Robert J. Fowler, Michael S. Paterson, and Steven L. Tanimoto. “Optimal packing and covering
in the plane are NP-complete”. In: Information Processing Letters 12.3 (June 1981), pp. 133-137.
1ssN: 0020-0190. por: 10.1016/0020-0190(81)90111-3.

Hamish J. Fraser and John A. George. “Integrated container loading software for pulp and
paper industry”. In: European Journal of Operational Research 77.3 (1994), pp. 466-474.

http://dx.doi.org/10.1287/ijoc.1080.0263
http://dx.doi.org/10.1016/j.cor.2009.09.017
http://paulbourke.net/texture_colour/randomtile/
http://paulbourke.net/texture_colour/randomtile/
http://arxiv.org/abs/1009.4322v1
http://dx.doi.org/10.1007/BF01181430
http://dx.doi.org/10.1007/s00500-015-1603-y
http://dx.doi.org/10.1007/s00500-015-1603-y
http://dx.doi.org/10.1016/0020-0190(81)90111-3

BIBLIOGRAPHY

[14] John A. George, Jennifer M. George, and Bruce W. Lamar. “Packing different-sized circles into a
rectangular container”. In: European Journal of Operational Research 84.3 (Aug. 1995), pp. 693-712.
1ssN: 0377-2217. por: 10.1016/0377-2217(95)00032-1.

[15] F. Gobel. “Geometrical packing and covering problems”. In: Packing and Covering in Combina-
torics, A. Schrijver (ed.), Math Centrum Tracts 106 (1979), pp. 179-199.

[16] R.L.Graham, B. D. Lubachevsky, K. J. Nurmela, and P. R. J. Ostergird. “Dense packings of
congruent circles in a circle”. In: Discrete Mathematics 181.1-3 (Feb. 1998), pp. 139-154. 1ssN:
0012-365X. po1: 10.1016/s0012-365x(97)00050-2.

[17] Ronald L. Graham and Boris D. Lubachevsky. “Repeated patterns of dense packings of equal
disks in a square”. In: The Electronic Journal of Combinatorics 3.1 (1996), R16.

[18] Claas de Groot, Ronald Peikert, and D. Wiirtz. The optimal packing of ten equal circles in a square.
1990.

[19] A. Grosso, A. R. M. J. U. Jamali, M. Locatelli, and F. Schoen. “Solving the problem of packing
equal and unequal circles in a circular container”. In: Journal of Global Optimization 47.1 (2010),
pp. 63-81.

[20] Kun He, Menglong Huang, and Chenkai Yang. “An action-space-based global optimization
algorithm for packing circles into a square container”. In: Computers & Operations Research 58
(June 2015), pp. 67-74. 1ssN: 0305-0548. po1: 10.1016/j.cor.2014.12.010.

[21] Mhand Hifi and Rym M’hallah. “A literature review on circle and sphere packing problems:
models and methodologies”. In: Advances in Operations Research (2009).

[22] Pedro Hokama, Flavio K. Miyazawa, and Rafael C. S. Schouery. “A bounded space algorithm
for online circle packing”. In: Information Processing Letters 116.5 (May 2016), pp. 337-342. 1ssN:
0020-0190. po1: 10.1016/j.ipl.2015.12.007.

[23] Stefan Hougardy. “On packing squares into a rectangle”. In: Computational Geometry 44.8 (2011),
pp- 456-463. 1ssN: 0925-7721. por: http://dx.doi.org/10.1016/j.comgeo.2011.05.001.

[24] Wen Qi Huang, Yu Li, Chu Min Li, and Ru Chu Xu. “New heuristics for packing unequal circles
into a circular container”. In: Computers & Operations Research 33.8 (Aug. 2006), pp. 2125-2142.
1ssN: 0305-0548. por1: 10.1016/j.cor.2005.01.003.

[25] Daniel J. Kleitman and Michael M. Krieger. “An optimal bound for two dimensional bin
packing”. In: Foundations of Computer Science, 1975., 16th Annual Symposium on (1975), pp. 163—
168.

[26] Robert J. Lang. “A computational algorithm for origami design”. In: Proceedings of the twelfth
annual symposium on Computational geometry - SCG 96 (1996). po1: 10.1145/237218.237249.

[27] Joseph Y. T. Leung, Tommy W. Tam, Chin S. Wong, Gilbert H. Young, and Francis Y. L. Chin.
“Packing squares into a square”. In: Journal of Parallel and Distributed Computing 10.3 (1990),
pp- 271-275.

http://dx.doi.org/10.1016/0377-2217(95)00032-l
http://dx.doi.org/10.1016/s0012-365x(97)00050-2
http://dx.doi.org/10.1016/j.cor.2014.12.010
http://dx.doi.org/10.1016/j.ipl.2015.12.007
http://dx.doi.org/http://dx.doi.org/10.1016/j.comgeo.2011.05.001
http://dx.doi.org/10.1016/j.cor.2005.01.003
http://dx.doi.org/10.1145/237218.237249

BIBLIOGRAPHY 65

[28] Igor Litvinchev, Luis Infante, and Edith Lucero Ozuna Espinosa. “Approximate Circle Packing
in a Rectangular Container: Integer Programming Formulations and Valid Inequalities”. In:
Computational Logistics (2014), pp. 47-60. 1ssN: 1611-3349. por: 10.1007/978-3-319-11421-
7_4.

[29] Marco Locatelli and Ulrich Raber. “Packing equal circles in a square: a deterministic global
optimization approach”. In: Discrete Applied Mathematics 122.1 (2002), pp. 139-166.

[30] C.O.Ldpez and J. E. Beasley. “Packing unequal circles using formulation space search”. In:
Computers & Operations Research 40.5 (May 2013), pp. 1276-1288. 1ssn: 0305-0548. por: 10.1016/
j.cor.2012.11.022.

[31] Boris D. Lubachevsky and Ronald L. Graham. “Curved hexagonal packings of equal disks in a
circle”. In: Discrete & Computational Geometry 18.2 (1997), pp. 179-194.

[32] Mihily Csaba Markdt and Tibor Csendes. “A new verified optimization technique for the"
packing circles in a unit square" problems”. In: SIAM Journal on Optimization 16.1 (2005),
pp. 193-219.

[33] Flavio K. Miyazawa, Lehilton L. C. Pedrosa, Rafael C. S. Schouery, Maxim Sviridenko, and
Yoshiko Wakabayashi. “Polynomial-Time Approximation Schemes for Circle Packing Prob-
lems”. In: Lecture Notes in Computer Science (2014), pp. 713-724. 1ssN: 1611-3349. por: 10.1007/
978-3-662-44777-2_59.

[34] John W. Moon and Leo Moser. “Some packing and covering theorems”. In: Colloquium Mathe-
maticae. Vol. 17. 1. Institute of Mathematics Polish Academy of Sciences. 1967, pp. 103-110.

[35] J. K. Nurmela and J. P. R. Ostergird. “More Optimal Packings of Equal Circles in a Square”.
In: Discrete & Computational Geometry 22.3 (1998), pp. 439-457. 1ssN: 1432-0444. po1: 10. 1007/
PLO0O009472.

[36] Ronald Peikert, Diethelm Wiirtz, Michael Monagan, and Claas de Groot. Packing circles in a
square: a review and new results. Springer, 1992.

[37] J. Schaer. “The densest packing of nine circles in a square”. In: Canad. Math. Bull 8 (1965),
pp. 273-277.

[38] J.Schaer and A. Meir. “On a geometric extremum problem”. In: Canad. Math. Bull 8.1 (1965).
[39] Eckard Specht. Packomania. 2015. URL: http://www.packomania.com/.

[40] Kokichi Sugihara, Masayoshi Sawai, Hiroaki Sano, Deok-Soo Kim, and Donguk Kim. “Disk
packing for the estimation of the size of'a wire bundle”. In: Japan Journal of Industrial and
Applied Mathematics 21.3 (2004), pp. 259-278.

[41] Péter Gabor Szabd, Mihaly Csaba Markdt, Tibor Csendes, Eckard Specht, Leocadio G. Casado,
and Inmaculada Garcia. New Approaches to Circle Packing in a Square. Springer US, 2007. por:
10.1007/978-0-387-45676-8.

[42] Axel Thue. “Om nogle geometrisk-taltheoretiske theoremer”. In: Forandlingerneved de Skandi-
naviske Naturforskeres 14 (1892), pp. 352-353.

http://dx.doi.org/10.1007/978-3-319-11421-7_4
http://dx.doi.org/10.1007/978-3-319-11421-7_4
http://dx.doi.org/10.1016/j.cor.2012.11.022
http://dx.doi.org/10.1016/j.cor.2012.11.022
http://dx.doi.org/10.1007/978-3-662-44777-2_59
http://dx.doi.org/10.1007/978-3-662-44777-2_59
http://dx.doi.org/10.1007/PL00009472
http://dx.doi.org/10.1007/PL00009472
http://www.packomania.com/
http://dx.doi.org/10.1007/978-0-387-45676-8

66

[43]

[45]

BIBLIOGRAPHY

Huaiqing Wang, Wenqi Huang, Quan Zhang, and Dongming Xu. “An improved algorithm
for the packing of unequal circles within a larger containing circle”. In: European Journal of
Operational Research 141.2 (Sept. 2002), pp. 440-453. 1ssN: 0377-2217. por: 10 . 1016/s0377 -
2217(01)00241-7.

D. Wiirtz, M. Monagan, and R. Peikert. “The history of packing circles in a square”. In: Maple
Technical Newsletter (1994), pp. 35-42.

De-fu Zhang and An-sheng Deng. “An effective hybrid algorithm for the problem of packing
circles into a larger containing circle”. In: Computers & Operations Research 32.8 (Aug. 2005),
pp- 1941-1951. 1ssN: 0305-0548. por: 10.1016/j.cor.2003.12.006.

http://dx.doi.org/10.1016/s0377-2217(01)00241-7
http://dx.doi.org/10.1016/s0377-2217(01)00241-7
http://dx.doi.org/10.1016/j.cor.2003.12.006

	Introduction
	Results
	Applications
	Organization

	Related work
	Packing squares
	Packing circles

	Split Packing
	Definitions
	Greedy splitting
	Split Packing
	Analysis

	Packing circles
	Hats
	Non-acute triangles
	Isosceles triangles
	The problem with acute triangles
	Rectangles

	Packing rubies
	Gems and rubies
	Isosceles right triangles
	Squares

	Future work
	Bibliography

