

Split Packing: An Algorithm for Packing Circles with up to Critical Density

Sebastian Morr

2016-06-09

The critical density for packing squares is 1/2 [Moon & Moser, 1967]

Outline

- 2 Other container types
- 3 Other object types
- 4 Future work

Critical density for packing circles into a square

What is the largest *a* so that any set of circles with a combined area of *a* can be packed into the unit square?

Critical density for packing circles into a square

What is the largest a so that any set of circles with a combined area of a can be packed into the unit square?

 \rightarrow Now: Constructive proof!

В

в		
1		

Split property:

All elements of larger group \geq groups' difference.

В			
---	--	--	--

Split property:

All elements of larger group \geq groups' difference.

Split property:

All elements of larger group \geq groups' difference.

An (a, b)-hat

4

7

8

SPLIT-PÄCK

7

https://morr.cc/split-packing/

Two perspectives:

Two perspectives:

Deciding packability

A tight sufficient density condition: Every instance with up to critical density d can be packed!

Two perspectives:

Deciding packability

A tight sufficient density condition: Every instance with up to critical density d can be packed!

Minimizing the container's size

A constant-factor approximation algorithm:

The ratio between the approximated and the optimal container area is at most 1/d.

Two perspectives:

Deciding packability

A tight sufficient density condition: Every instance with up to critical density d can be packed!

Minimizing the container's size

A constant-factor approximation algorithm:

The ratio between the approximated and the optimal container area is at most 1/d.

Runtime:

Two perspectives:

Deciding packability

A tight sufficient density condition: Every instance with up to critical density d can be packed!

Minimizing the container's size

A constant-factor approximation algorithm:

The ratio between the approximated and the optimal container area is at most 1/d.

Runtime:

- At most $\mathcal{O}(n^2)$ numeric operations
 - Worst-case greedy split: $n + (n 1) + (n 2) + \cdots + 1$ operations

Two perspectives:

Deciding packability

A tight sufficient density condition: Every instance with up to critical density d can be packed!

Minimizing the container's size

A constant-factor approximation algorithm:

The ratio between the approximated and the optimal container area is at most 1/d.

Runtime:

- At most $\mathcal{O}(n^2)$ numeric operations
 - ▶ Worst-case greedy split: $n + (n 1) + (n 2) + \cdots + 1$ operations
- Exactly 3n 2 geometric constructions
 - ▶ Full binary recursion tree with *n* leaf nodes

Circles in a square

Critical density:
$$\frac{\pi}{3+2\sqrt{2}} \approx 53.90\%$$

Approximation factor:
$$\frac{3+2\sqrt{2}}{\pi} \approx 1.8552$$

Sebastian Morr

Circles in a square: Examples

Outline

3 Other object types

4 Future work

Splitting for asymmetric triangles

Circles in a right/obtuse triangle

Condition: $a^2 + b^2 \leq c^2$

Critical density:
$$\sqrt{rac{-(a-b-c)(a+b-c)(a-b+c)}{(a+b+c)^3}}\pi < 53.91\%$$

Approximation factor: Larger than 1.8552

Circles in a right/obtuse triangle: Examples

Circles in a thick isosceles triangle

$$Condition: \ \frac{c}{\sqrt{2}} \le b \le c$$

$$Critical \ density: \ 48.60\% < \frac{(c-2b+\sqrt{4b^2-c^2})^2\pi}{2c\sqrt{4b^2-c^2}} < 53.91\%$$

Approximation factor: Between 1.8552 and 2.0576

Circles in a thick isosceles triangle: Examples

The problem with acute triangles

The problem with acute triangles

The problem with acute triangles

Circles in a long rectangle

Condition:
$$w \geq rac{2+3\sqrt{2}}{4}h pprox 1.5607h$$

Critical density: $\frac{\pi h}{4w} < 50.33\%$

Approximation factor:
$$\frac{4w}{\pi h} > 1.9870$$

Circles in a long rectangle: Examples

Outline

Packing circles in a square

- 2 Other container types
- 3 Other object types

4 Future work

Other shapes in a square?

Other shapes in a square?

Other shapes in a square?

Rubies!

Rubies!

Rubies in a square

Critical density: $8\sqrt{2(\sqrt{2}-1)} + 6\sqrt{2} - 15 \approx 76.67\%$

Approximation factor: ≈ 1.3043

Rubies in a square: Examples

Squares in a square

Critical density: 50%

Approximation factor: 2

Octagons in a square

Critical density: $8(5\sqrt{2}-7) \approx 56.85\%$

Approximation factor: ≈ 1.7589

"Sharp rubies" in an isosceles right triangle

Critical density:
$$4\sqrt{2(\sqrt{2}-1)} + 3\sqrt{2} - 7 \approx 88.34\%$$

Approximation factor: ≈ 1.1320

"Sharp rubies" in an isosceles right triangle: Examples

Outline

Packing circles in a square

- 2 Other container types
- 3 Other object types

Future work: More container types

Future work: Acute triangles

Future work: More object types

- Ovals
- Rectangles
- General convex polygons?

What do the critical instances look like?

Future work: Maximum object size

Current best achievable density for packing squares into a square in an online setting: $^{2\!/\!5}$

[Brubach 2015]

Future work: Circle/river packing

Future work: 3D

Algorithms for packing...

- Algorithms for packing...
 - circles, squares, and octagons into squares

- Algorithms for packing...
 - circles, squares, and octagons into squares
 - circles into non-acute triangles, thick isosceles triangles, and long rectangles

- Algorithms for packing...
 - circles, squares, and octagons into squares
 - circles into non-acute triangles, thick isosceles triangles, and long rectangles
 - ... with critical density!

- Algorithms for packing...
 - circles, squares, and octagons into squares
 - circles into non-acute triangles, thick isosceles triangles, and long rectangles
 - ... with critical density!

Onstant-factor approximation algorithms for these problems

- Algorithms for packing...
 - circles, squares, and octagons into squares
 - circles into non-acute triangles, thick isosceles triangles, and long rectangles
 - ... with critical density!
- Onstant-factor approximation algorithms for these problems
- Interactive visualization, at https://morr.cc/split-packing/

- Algorithms for packing...
 - circles, squares, and octagons into squares
 - circles into non-acute triangles, thick isosceles triangles, and long rectangles
 - ... with critical density!
- Onstant-factor approximation algorithms for these problems
- Interactive visualization, at https://morr.cc/split-packing/
- Promising future work

- Algorithms for packing...
 - circles, squares, and octagons into squares
 - circles into non-acute triangles, thick isosceles triangles, and long rectangles
 - ... with critical density!
- Onstant-factor approximation algorithms for these problems
- Interactive visualization, at https://morr.cc/split-packing/
- Promising future work

Thanks!

Bonus slide: Applications

