

Exact Minkowski Sums of Polygons With Holes

Alon Baram ${ }^{1}$ Efi Fogel ${ }^{1}$ Dan Halperin ${ }^{1}$ Michael Hemmer ${ }^{2}$ Sebastian Morr ${ }^{2}$

What's the Minkowski Sum?

What's the Minkowski Sum?

$$
P
$$

What's the Minkowski Sum?

$$
P \quad \oplus \quad Q
$$

What's the Minkowski Sum?

What's the Minkowski Sum?

Applications: Motion planning, packing problems, CAD, ...

Decomposition approach

[Lozano-Pérez (1983)]

Decomposition approach

[Lozano-Pérez (1983)]

Decomposition approach

[Lozano-Pérez (1983)]

Decomposition approach

[Lozano-Pérez (1983)]

Decomposition approach

[Lozano-Pérez (1983)]

Decomposition approach

[Lozano-Pérez (1983)]

Convolution approach

[Guibas et al. (1983)]

Convolution approach

$$
P=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right)
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
& P=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
& Q=\left(q_{0}, q_{1}, \ldots, q_{m-1}\right)
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P & =\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q & =\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q & =\{
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P & =\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q & =\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q & =\left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j}\right.
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P & =\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q & =\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q & =\left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overrightarrow{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
& P=\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
& Q=\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
& P \otimes Q=\left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j}| | \bar{q}_{i} q_{i+1}\right. \\
&\text { ccw between } \left.\overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P & =\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q & =\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q & =\left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overline{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P & =\left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q & =\left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q & =\left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overrightarrow{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P= & \left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q= & \left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q= & \left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overrightarrow{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\} \quad \cup \\
& \left\{\overrightarrow{p_{i} p_{i+1}} \oplus q_{j} \mid \overrightarrow{p_{i} p_{i+1}} \text { ccw between } \overrightarrow{q_{j-1} q_{j}} \text { and } \overrightarrow{q_{j} q_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P= & \left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q= & \left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q= & \left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overrightarrow{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\} \quad \cup \\
& \left\{\overrightarrow{p_{i} p_{i+1}} \oplus q_{j} \mid \overrightarrow{p_{i} p_{i+1}} \text { ccw between } \overrightarrow{q_{j-1} q_{j}} \text { and } \overrightarrow{q_{j} q_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P= & \left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q= & \left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q= & \left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overrightarrow{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\} \quad \cup \\
& \left\{\overrightarrow{p_{i} p_{i+1}} \oplus q_{j} \mid \overrightarrow{p_{i} p_{i+1}} \text { ccw between } \overrightarrow{q_{j-1} q_{j}} \text { and } \overrightarrow{q_{j} q_{j+1}}\right\}
\end{aligned}
$$

[Guibas et al. (1983)]

Convolution approach

$$
\begin{aligned}
P= & \left(p_{0}, p_{1}, \ldots, p_{n-1}\right) \\
Q= & \left(q_{0}, q_{1}, \ldots, q_{m-1}\right) \\
P \otimes Q= & \left\{\overrightarrow{q_{i} q_{i+1}} \oplus p_{j} \mid \overrightarrow{q_{i} q_{i+1}} \text { ccw between } \overrightarrow{p_{j-1} p_{j}} \text { and } \overrightarrow{p_{j} p_{j+1}}\right\} \quad \cup \\
& \left\{\overrightarrow{p_{i} p_{i+1}} \oplus q_{j} \mid \overrightarrow{p_{i} p_{i+1}} \text { ccw between } \overrightarrow{q_{j-1} q_{j}} \text { and } \overrightarrow{q_{j} q_{j+1}}\right\}
\end{aligned}
$$

Bottleneck: arrangement computation, worst case size $O\left(n^{2} m^{2}\right)$
[Guibas et al. (1983)]

Overview

(1) Can we speed up the convolution approach?

(2) Can we fill in holes?

(3) How does the algorithm compare to other approaches?

Observation Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Observation

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Observation

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Observation

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Observation

Reflex vertices don't contribute to the Minkowski Sum's boundary!

Reduced convolution approach

Step 1

Compute the reduced convolution.
[Behar and Lien, 2011]

Reduced convolution approach

Step 1

Compute the reduced convolution.

Step 2

Compute the arrangement of the segments.
[Behar and Lien, 2011]

Reduced convolution approach

Step 1

Compute the reduced convolution.

Step 2

Compute the arrangement of the segments.

The winding number property can not be used anymore.
[Behar and Lien, 2011]

Reduced convolution approach

Step 1

Compute the reduced convolution.

Step 2

Compute the arrangement of the segments.

The winding number property can not be used anymore.

Instead, two more steps to remove false holes.
[Behar and Lien, 2011]

Quick orientation filter

Step 3

Iterate over all faces, discard loops which are not orientable.

Quick orientation filter

Step 3

Iterate over all faces, discard loops which are not orientable.

Step 4

Step 4

For all remaining faces:

Step 4

For all remaining faces: Find a point inside the face,

Step 4

For all remaining faces: Find a point inside the face, translate $-Q$ to that point,

Step 4

For all remaining faces: Find a point inside the face, translate $-Q$ to that point, and intersect it with P.

Step 4

For all remaining faces: Find a point inside the face, translate $-Q$ to that point, and intersect it with P. If there is an intersection,

Step 4

For all remaining faces: Find a point inside the face, translate $-Q$ to that point, and intersect it with P. If there is an intersection, discard the face.

Step 4

For all remaining faces: Find a point inside the face, translate $-Q$ to that point, and intersect it with P. If there is an intersection, discard the face.

The remaining faces are exactly the holes of $P \oplus Q$!

What about holes?

Even the reduced convolution can become quite complex:

What about holes?

Even the reduced convolution can become quite complex:

What about holes?

Even the reduced convolution can become quite complex:

What about holes?

Even the reduced convolution can become quite complex:

Idea: Reduce input complexity!

Overview

(1) Can we speed up the convolution approach?
(2) Can we fill in holes?

(3) How does the algorithm compare to other approaches?

First, we need some polygons with holes. . .

First, we need some polygons with holes. . .

Observation

Observation

Observation

Which holes are relevant?

Hole filter

Theorem

Hole filter

Theorem

If there is a path γ in Q

Hole filter

Theorem

If there is a path γ in Q so that $-\gamma$ does not fit under any translation inside a hole of P,

Hole filter

Theorem

If there is a path γ in Q so that $-\gamma$ does not fit under any translation inside a hole of P, then that hole can be filled up.

Hole filter

Theorem

If there is a path γ in Q so that $-\gamma$ does not fit under any translation inside a hole of P, then that hole can be filled up.

Because when the hole's boundary is added to γ, it "smears" completely over the hole.

Corollaries

Corollary

Corollaries

Corollary
 If there are two points in Q

Corollaries

Corollary

If there are two points in Q so that their inverse does not fit under any translation inside a hole of P,

Corollaries

Corollary

If there are two points in Q so that their inverse does not fit under any translation inside a hole of P, then that hole can be filled up.

Corollaries

Corollary

If there are two points in Q so that their inverse does not fit under any translation inside a hole of P, then that hole can be filled up.

Corollary

If Q's axis-aligned bounding box does not completely fit inside the hole's axis-aligned bounding box, the hole can be filled up.

Effect on input

Effect on input

Effect on input

Effect on input

- One is always simple!

Effect on input

- One is always simple! Sometimes both.

Effect on input

- One is always simple! Sometimes both.

This filter is. . .

- approach independent

Effect on input

- One is always simple! Sometimes both.

This filter is. . .

- approach independent
- generalizable to higher dimensions

Overview

(1) Can we speed up the convolution approach?
(2) Can we fill in holes?
(3) How does the algorithm compare to other approaches?

Implementation

Simple polygons General polygons

Inexact Exact

Implementation

Simple polygons General polygons

Inexact
Exact Wein (2006)

Implementation

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	

Implementation

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	NEW

Implementation

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	NEW

Implementation

Starting with CGAL 4.7, you can use the method CGAL: :minkowski_sum_2() on polygons with holes!

Benchmark: Simple polygons

Benchmark: Simple polygons

Benchmark: Polygons with holes

Implemented decomposition approaches

Vertical decomposition

Constrained triangulation

Implemented decomposition approaches

Vertical decomposition
Constrained triangulation

Implemented decomposition approaches

Vertical decomposition

Constrained triangulation

Benchmark: Polygons with holes

Benchmark: Growing circle (no hole filter)

Benchmark: Growing circle (with hole filter)

Benchmark: Glyph Offset

(75 vertices)
(8319 vertices)

Benchmark: Glyph Offset (letter M)

Benchmark: Glyph Offset (letter A)

Contributions

- Minkowski Sum of polygons with holes in CGAL
- reduced convolution
- two decomposition methods

Contributions

(1) Minkowski Sum of polygons with holes in CGAL

- reduced convolution
- two decomposition methods
(2) General input-level hole filter to reduce complexity

Contributions

(1) Minkowski Sum of polygons with holes in CGAL

- reduced convolution
- two decomposition methods
(2) General input-level hole filter to reduce complexity

Thanks!

