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What’s the Minkowski Sum?

P ⊕ Q = {p + q | p ∈ P, q ∈ Q}

Applications: Motion planning, packing problems, CAD, . . .
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Convolution approach

P = (p0, p1, . . . , pn−1)
Q = (q0, q1, . . . , qm−1)

P ⊗ Q = {−−−→qiqi+1 ⊕ pj | −−−→qiqi+1 ccw between −−−→pj−1pj and −−−→pjpj+1} ∪
{−−−→pipi+1 ⊕ qj | −−−→pipi+1 ccw between −−−→qj−1qj and −−−→qjqj+1}

⊗ =

1

2

Bottleneck: arrangement computation, worst case size O(n2m2)

[Guibas et al. (1983)]
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Overview

1 Can we speed up the convolution approach?

2 Can we fill in holes?

3 How does the algorithm compare to other approaches?

Baram, Fogel, Halperin, Hemmer, Morr Exact M-Sums of Polygons With Holes Tel Aviv / Braunschweig 5 / 29



Observation
Reflex vertices don’t contribute to the Minkowski Sum’s boundary!

→

[Kaul et al. (1992)]
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Reduced convolution approach

Step 1
Compute the reduced convolution.

Step 2
Compute the arrangement of the segments.

The winding number property can not be used anymore.

Instead, two more steps to remove false holes.

[Behar and Lien, 2011]
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Quick orientation filter

Step 3
Iterate over all faces, discard loops which are not orientable.
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Step 4

For all remaining faces: Find a point inside the face, translate −Q to that
point, and intersect it with P. If there is an intersection, discard the face.

The remaining faces are exactly the holes of P ⊕ Q!
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What about holes?

Even the reduced convolution can become quite complex:

Idea: Reduce input complexity!
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First, we need some polygons with holes. . .
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Observation

⊕

=

Which holes are relevant?
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Hole filter

Theorem

If there is a path γ in Q so that −γ does not fit under any translation
inside a hole of P, then that hole can be filled up.

⊕

=

Because when the hole’s boundary is added to γ, it “smears” completely
over the hole.
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Corollaries

Corollary

If there are two points in Q so that their inverse does not fit under any
translation inside a hole of P, then that hole can be filled up.

Corollary
If Q’s axis-aligned bounding box does not completely fit inside the hole’s
axis-aligned bounding box, the hole can be filled up.

⊕ =
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Effect on input

⊕ =

⊕

One is always simple! Sometimes both.

This filter is. . .
approach independent
generalizable to higher dimensions
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Overview

1 Can we speed up the convolution approach?

2 Can we fill in holes?

3 How does the algorithm compare to other approaches?
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Implementation

Simple polygons General polygons
Inexact

Behar and Lien (2011)

Exact

Wein (2006) NEW

Starting with CGAL 4.7, you can use the method
CGAL::minkowski_sum_2() on polygons with holes!
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Benchmark: Simple polygons
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Benchmark: Simple polygons
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Benchmark: Polygons with holes
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Implemented decomposition approaches

Vertical decomposition Constrained triangulation
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Benchmark: Polygons with holes
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Benchmark: Growing circle (no hole filter)
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Benchmark: Growing circle (with hole filter)
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Benchmark: Glyph Offset

(75 vertices) (8319 vertices)
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Benchmark: Glyph Offset (letter M)
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Benchmark: Glyph Offset (letter A)
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Contributions
1 Minkowski Sum of polygons with holes in CGAL

I reduced convolution
I two decomposition methods

2 General input-level hole filter to reduce complexity

Thanks!

Baram, Fogel, Halperin, Hemmer, Morr Exact M-Sums of Polygons With Holes Tel Aviv / Braunschweig 29 / 29



Contributions
1 Minkowski Sum of polygons with holes in CGAL

I reduced convolution
I two decomposition methods

2 General input-level hole filter to reduce complexity

Thanks!

Baram, Fogel, Halperin, Hemmer, Morr Exact M-Sums of Polygons With Holes Tel Aviv / Braunschweig 29 / 29



Contributions
1 Minkowski Sum of polygons with holes in CGAL

I reduced convolution
I two decomposition methods

2 General input-level hole filter to reduce complexity

Thanks!

Baram, Fogel, Halperin, Hemmer, Morr Exact M-Sums of Polygons With Holes Tel Aviv / Braunschweig 29 / 29


	Can we speed up the convolution approach?
	Can we fill in holes?
	How does the algorithm compare to other approaches?

