

Exact Minkowski Sums of Polygons With Holes

Alon Baram ¹ Efi Fogel ¹ Dan Halperin ¹ Michael Hemmer ² <u>Sebastian Morr</u> ²

Applications: Motion planning, packing problems, CAD, ...

[Lozano-Pérez (1983)]

3 / 29

[Guibas et al. (1983)]

$$P = (p_0, p_1, \dots, p_{n-1})$$

[Guibas et al. (1983)]

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

[Guibas et al. (1983)]

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{$$

[Guibas et al. (1983)]

4 / 29

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{\overline{q_i q_{i+1}}\}$$

[Guibas et al. (1983)]

4 / 29

$$P = (p_0, p_1, \dots, p_{n-1})
Q = (q_0, q_1, \dots, q_{m-1})
P \otimes Q = \{\overline{q_i q_{i+1}} \oplus p_j\}$$

[Guibas et al. (1983)]

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{\overrightarrow{q_i q_{i+1}} \oplus p_j \mid \overrightarrow{q_i q_{i+1}} \text{ ccw between } \overrightarrow{p_{j-1} p_j} \text{ and } \overrightarrow{p_j p_{j+1}}\} \cup$$

[Guibas et al. (1983)]

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{\overrightarrow{q_i q_{i+1}} \oplus p_j \mid \overrightarrow{q_i q_{i+1}} \text{ ccw between } \overrightarrow{p_{j-1} p_j} \text{ and } \overrightarrow{p_j p_{j+1}}\} \cup$$

[Guibas et al. (1983)]

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{\overrightarrow{q_i q_{i+1}} \oplus p_j \mid \overrightarrow{q_i q_{i+1}} \text{ ccw between } \overrightarrow{p_{j-1} p_j} \text{ and } \overrightarrow{p_j p_{j+1}}\} \cup$$

4 / 29

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{\overrightarrow{q_i q_{i+1}} \oplus p_j \mid \overrightarrow{q_i q_{i+1}} \text{ ccw between } \overrightarrow{p_{j-1} p_j} \text{ and } \overrightarrow{p_j p_{j+1}}\} \cup$$

$$P = (p_0, p_1, \dots, p_{n-1})$$

$$Q = (q_0, q_1, \dots, q_{m-1})$$

$$P \otimes Q = \{ \overline{q_i q_{i+1}} \oplus p_j \mid | \overline{q_i q_{i+1}} \text{ ccw between } \overline{p_{j-1} p_j} \text{ and } \overline{p_j p_{j+1}} \} \cup \{ \overline{p_i p_{i+1}} \oplus q_j \mid | \overline{p_i p_{i+1}} \text{ ccw between } \overline{q_{j-1} q_j} \text{ and } \overline{q_j q_{j+1}} \}$$

Overview

1 Can we speed up the convolution approach?

2 Can we fill in holes?

3 How does the algorithm compare to other approaches?

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

6 / 29

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Reflex vertices don't contribute to the Minkowski Sum's boundary!

[Kaul et al. (1992)]

Step 1

Compute the reduced convolution.

[Behar and Lien, 2011]

7 / 29

Step 1

Compute the reduced convolution.

Step 2

Compute the arrangement of the segments.

7 / 29

Step 1

Compute the reduced convolution.

Step 2

Compute the arrangement of the segments.

The winding number property can not be used anymore.

[Behar and Lien, 2011]

Step 1

Compute the reduced convolution.

Step 2

Compute the arrangement of the segments.

The winding number property can not be used anymore.

Instead, two more steps to remove *false holes*.

[Behar and Lien, 2011]
Quick orientation filter

Step 3

Iterate over all faces, discard loops which are not orientable.

Quick orientation filter

Step 3

Iterate over all faces, discard loops which are not orientable.

For all remaining faces:

For all remaining faces: Find a point inside the face,

For all remaining faces: Find a point inside the face, translate -Q to that point,

For all remaining faces: Find a point inside the face, translate -Q to that point, and intersect it with P.

For all remaining faces: Find a point inside the face, translate -Q to that point, and intersect it with P. If there is an intersection,

For all remaining faces: Find a point inside the face, translate -Q to that point, and intersect it with P. If there is an intersection, discard the face.

For all remaining faces: Find a point inside the face, translate -Q to that point, and intersect it with P. If there is an intersection, discard the face.

The remaining faces are exactly the holes of $P \oplus Q!$

9 / 29

Even the reduced convolution can become quite complex:

Even the reduced convolution can become quite complex:

Even the reduced convolution can become quite complex:

Even the reduced convolution can become quite complex:

Idea: Reduce input complexity!

Overview

Can we speed up the convolution approach?

How does the algorithm compare to other approaches?

First, we need some polygons with holes...

First, we need some polygons with holes...

Observation

Observation

Observation

Which holes are relevant?

Theorem

Theorem

If there is a path γ in Q

Theorem

If there is a path γ in Q so that $-\gamma$ does not fit under any translation inside a hole of P,

Theorem

If there is a path γ in Q so that $-\gamma$ does not fit under any translation inside a hole of P, then that hole can be filled up.

Theorem

If there is a path γ in Q so that $-\gamma$ does not fit under any translation inside a hole of P, then that hole can be filled up.

Because when the hole's boundary is added to γ , it "smears" completely over the hole.

Corollary

Corollary

If there are two points in Q

Corollary

If there are two points in Q so that their inverse does not fit under any translation inside a hole of P,

Corollary

If there are two points in Q so that their inverse does not fit under any translation inside a hole of P, then that hole can be filled up.

Corollary

If there are two points in Q so that their inverse does not fit under any translation inside a hole of P, then that hole can be filled up.

Corollary

If Q's axis-aligned bounding box does not completely fit inside the hole's axis-aligned bounding box, the hole can be filled up.

• One is always simple!

• One is always simple! Sometimes both.

• One is always simple! Sometimes both.

This filter is...

approach independent
Effect on input

• One is always simple! Sometimes both.

This filter is. . .

- approach independent
- generalizable to higher dimensions

Overview

Can we speed up the convolution approach?

2 Can we fill in holes?

Bow does the algorithm compare to other approaches?

Simple polygons General polygons Inexact Exact

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	NEW

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	NEW

	Simple polygons	General polygons
Inexact		Behar and Lien (2011)
Exact	Wein (2006)	NEW

Starting with CGAL 4.7, you can use the method CGAL::minkowski_sum_2() on polygons with holes!

Benchmark: Simple polygons

Benchmark: Simple polygons

Number of vertices

Benchmark: Polygons with holes

Implemented decomposition approaches

Vertical decomposition

Constrained triangulation

Implemented decomposition approaches

Vertical decomposition

Constrained triangulation

Implemented decomposition approaches

Benchmark: Polygons with holes

Number of vertices

Benchmark: Growing circle (no hole filter)

Diameter of the circle

Benchmark: Growing circle (with hole filter)

Diameter of the circle

Benchmark: Glyph Offset

(75 vertices)

(8319 vertices)

Benchmark: Glyph Offset (letter M)

Number of vertices in glyph

27 / 29

Benchmark: Glyph Offset (letter A)

Number of vertices in glyph

Contributions

- Minkowski Sum of polygons with holes in CGAL
 - reduced convolution
 - two decomposition methods

Contributions

- Minkowski Sum of polygons with holes in CGAL
 - reduced convolution
 - two decomposition methods

General input-level hole filter to reduce complexity

Contributions

- Minkowski Sum of polygons with holes in CGAL
 - reduced convolution
 - two decomposition methods
- **2** General input-level hole filter to reduce complexity

Thanks!

