
Bachelor Thesis

The Nut Shell – A Framework for
Creating Interactive Command Line

Tutorials

Sebastian Morr

2013–11–03

Institute for Programming and Reactive Systems
Prof. Dr. Ursula Goltz

Advisor: Dr. Werner Struckmann

Abstract

Command line interfaces provide powerful, expressive means to interact with
computers, but compared to graphical user interfaces, they have a steep learning
curve. Inspired by text adventures, this thesis introduces a new interface concept
for teaching command line programs: An interactive, terminal-based tutorial
environment, where the documentation reacts to the user’s commands, to the
command line’s response and its internal state.
The thesis covers design, implementation, application and evaluation of the

Nut Shell, a software framework for creating such tutorials.
An abstraction layer is devised that gives the framework uniform access to

the different parts of interaction within arbitrary command line programs, while
retaining all their built-in editing features. The framework is compatible with
system shells and many interpreted programming languages, but can also be used
to teach subtopics, like specific command line tools or concepts.
The Nut Shell introduces a new domain specific language, that can be used to

describe tutorial lessons. The language’s syntactic structures are tailored for this
purpose and allow for fast and easy content creation. A built-in testing facility
enables authors to check their tutorials for proper function automatically.
In a two-week evaluation study with about 120 participants, a tutorial created

with the Nut Shell proved superior to a teaching method based on static text: Users
of the Nut Shell showed a much higher motivation to attend to the course, said
they had more fun and learned more, and were able to work more autonomously.

Zusammenfassung

Kommandozeilen-Interfaces sind eine mächtige, ausdrucksstarke Art und Weise,
mit Computern zu interagieren, sie haben allerdings eine steilere Lernkurve als
grafische Inferfaces. Diese Bachelorarbeit stellt ein neuartiges Interfacekonzept zum
Lehren von Kommandozeilen-Programmen vor, das durch Textadventures inspiriert
ist: Eine interaktive, Terminal-basierte Lernumgebung, deren Anleitungstext auf
die Befehle des Benutzers, auf die Antwort der Kommandozeile sowie ihren internen
Zustand reagiert.

Die Arbeit umfasst Design, Implementierung, Anwendung und Evaluierung der
Nut Shell, einem Softwareframework zum Erstellen solcher Tutorials.

Eine Abstraktionsschicht wird entworfen, die dem Framework einheitlichen Zugriff
auf die verschiedenen Bestandteile der Interaktion innerhalb beliebiger Komman-
dozeilenproramme erlaubt, wobei deren eingebaute Editierfunktionen benutzbar
bleiben. Das Framework ist kompatibel mit System-Shells und vielen interpretierten
Programmiersprachen, kann aber auch verwendet werden, um Unterthemen zu
lehren, wie etwa spezielle Kommandozeilenwerkzeuge oder -konzepte.

Für die Nut Shell wurde eine neue domänenspezifische Sprache entwickelt, in der
die Tutoriallektionen geschrieben werden können. Die syntaktischen Strukturen der
Sprache sind für diesen Zweck maßgeschneidert und machen deshalb das Erstellen
von Inhalten schnell und einfach. Eine eingebaute Test-Infrastruktur ermöglicht es
Autoren, ihre Tutorials automatisch auf korrekte Funktionsweise zu überprüfen.

In einer zweiwöchigen Auswertung mit etwa 120 Teilnehmern zeigte ein mit der
Nut Shell erstelltes Tutorial klare Vorteile gegenüber einem Lehransatz, der auf
statischem Text basierte: Benutzer der Nut Shell waren motivierter, an dem Kurs
teilzunehmen, sie hatten mehr Spaß, lernten mehr, und konnten selbstständiger
arbeiten.

Acknowledgments
I would like to thank the following people for their support in the creation of this
thesis: Werner Struckmann patiently answered every question I had. Hendrik Frey-
tag provided the list of test questions for the evaluation. Arne Brüsch and Markus
Reschke helped making the evaluation a lot of fun and contributed interesting ideas.
Heike Laschin, Moritz Mühlhausen and Leslie Wöhler did some early beta-testing
and influenced the style of the final tutorial. Jan Steiner helped proof-reading the
final document. My family gave me a great amount of support and motivation.
And finally, I want to thank the 120 students who bravely participated in the first
evaluation of the Nut Shell and gave helpful and encouraging feedback.

Colophon
This document was created using LATEX2ε by Leslie Lamport and contributors, and
KOMA-Script by Frank Neukam, Markus Kohm, and Axel Kielhorn. The figures
were created using PGFPlots by Christian Feuersänger and TikZ by Till Tantau,
the key combinations were produced with menukeys by Tobias Weh. The text is set
in the Latin Modern font family by Bogusław Jackowski, Janusz M. Nowacki and
Marcin Woliński, the monospaced font is Bera Mono, based on Bitstream Vera.

Affidavit
This thesis is my own unaided work. All sources are acknowledged as references.
Ich habe diese Abschlussarbeit selbstständig verfasst. Alle Quellen wurden angegeben.

Braunschweig, 2013–11–03 .

4

Contents

1 Introduction 7
1.1 Prior work . 8
1.2 Overview and organization . 9
1.3 Notation . 10

2 Preliminaries 11
2.1 Command line interfaces . 11
2.2 Terminal . 12
2.3 Escape sequences and control characters 12
2.4 Readline . 13

3 The CLI Abstraction Layer 14
3.1 Targets . 14
3.2 High-level architecture . 15
3.3 Recognizing the prompt . 16
3.4 Recognizing the command . 17
3.5 Command line operations . 20

4 The nutsh Language 21
4.1 Design goals . 21
4.2 Lexical elements . 21
4.3 Syntax and semantics . 22

4.3.1 Expressions . 22
4.3.2 Built-in functions . 23
4.3.3 Statements . 24
4.3.4 Top level structure . 26

4.4 Parsing and interpretation . 27
4.5 Automated testing . 27

5 Implementation 29

6 Application and Evaluation 30
6.1 Setting . 30
6.2 Style . 31

5

6.3 Survey . 31
6.4 Results . 33
6.5 Discussion . 33

7 Conclusions and Future Work 37

A Example nutsh Lesson 39

B List of Lessons Used in the Evaluation 46

Bibliography 48

6

1 Introduction
These days, the most common method for humans to operate computers is via a
graphical user interface. It provides buttons and other visual elements the user can
interact with using a mouse. Before this interaction method was invented, however,
computers had a text-only interface. The user would type a text command, and the
machine would execute it. These command line interfaces (CLIs) provide powerful,
efficient means to interact with computers, which is why many people still can
benefit from learning how to use them. But CLIs often have a steep learning curve:
Unlike graphical user interfaces, they are not self-evident—users have to know
which commands they can enter, which is why novice users definitely need some
form of guidance.
Most approaches to teach command line interfaces involve static text: There

are books and manuals, online tutorials and exercise sheets. These approaches
have several drawbacks: The users have to shift their attention back and forth
between the explaining text and the system they want to learn, which slows down
the learning process. The text might set tasks and goals, but has no possibility to
check and confirm when the user reaches them. Finally, when the user makes a
syntactical or semantical mistake, the text remains static and cannot provide any
help or correction.
This thesis describes a system that provides a much more direct, interactive

teaching approach. The core idea is to interweave the tutorial text and the output
of the command line system and to make the tutorial watch the user’s commands,
in addition to the command line system’s state and output, to allow direct response
to the user’s actions.

This approach is inspired by text adventures. Figure 1.1 shows one of the earliest
programs of this kind, Zork, originally released in 1979 by members of the MIT
Dynamic Modelling Group [5]. In this game, players type short commands of what
they want to do, and the game responds with a description of what effects these
actions have. Tutorials for technical systems could work similarly: They could
provide direct feedback to the users’ commands and support them when they make
mistakes or encounter problems (note Zork’s response to examine mailbox).
Goal of this thesis is to design, implement, apply and evaluate a framework

that allows the creation of command line tutorials with this interactive teaching
approach. This framework has been called the Nut Shell, in reference to the term
in a nutshell (“to the point”, “short and sweet”).

7

West of House
You are standing in an open field west of a white house, with a
boarded front door.
There is a small mailbox here.

> examine mailbox
The small mailbox is closed.

> open mailbox
Opening the small mailbox reveals a leaflet.

> take leaflet
Taken.

> read leaflet
"WELCOME TO ZORK!

ZORK is a game of adventure, danger, and low cunning. In it you
will explore some of the most amazing territory ever seen by
mortals. No computer should be without one!"

Figure 1.1: The beginning of a Zork session.

1.1 Prior work
Try Ruby was an interactive online tutorial that would provide an introduction to
the Ruby scripting language in the web browser. A notable anonymous programmer
called “_why” first published it at the end of 2005. To the author’s knowledge,
this was the first attempt to create interactive command line tutorials [12]. The
interface consisted of two sections: One side contained the current task, the other
side held an interactive Ruby prompt. The user would then type in commands,
and the application would check whether either the command or the interpreter’s
output matched a regular expression. In this case, the current exercise would be
solved and the tutorial would advance to the next one. The site went offline in
early 2009, but some members of the Ruby community continue development.

A web site called Codecademy1 deploys several interactive tutorials, which focus
on teaching programming in Ruby, Python, JavaScript and PHP. The tutorials
consist of multiple exercises, in each of which users get a piece of unfinished code

1http://www.codecademy.com

8

http://www.codecademy.com

in addition to a task. They are then supposed to fix or complete the code so that
it satisfies a number of conditions, which can be quite complex. Every time the
code is saved, the conditions are checked. On success, the tutorial advances to the
next exercise.
The site Code School2 follows a similar approach: It offers courses about Ruby,

JavaScript, HTML/CSS, R and Git, which are designed similarly to Codecademy’s.
The company behind Code School is also responsible for Try Git3 and the current
Try Ruby implementation4, which work similarly to the original Try Ruby.

Although these implementations of interactive tutorials are dramatic improve-
ments over classical, static tutorials, they still have several problems: The courses
are linear—each task has to be solved to get to the next one, which is inflexible
and allows no adaptation to the individual user.
Furthermore, they do not offer the level of persistence that normal interaction

with the command line has: Every entered line is run separately, the system has
no internal state. For example, when the user defines a variable, it is lost when
entering the next line, because the interpreter is restarted. Try Ruby tries to
circumvent this restriction by re-executing each command that was entered so far,
which slows down the system’s response speed over time.

Although the applications provide some command editing capabilities, it is not
possible to use comfort functions like searching the command history or using tab-
completion. As these techniques are essential for efficient usage of these interfaces,
this is a big drawback.

To present the tutorials in a web browser ensures easy, universal access without
any setup at all. However, there is no way to incorporate local files or programs
into the tutorials, and the later change away from the online tutorial toward the
“real” command line environment will make a dramatic difference to the user.

The Nut Shell addresses all these shortcomings: Tutorials can be highly nonlinear,
the command line program’s state is persistent during a lesson, all editing facilities
are kept available and the tutorial is presented in the same environment where it is
commonly used—in the terminal.

1.2 Overview and organization
The chapter’s structure follows a bottom-up fashion:

Chapter 2 introduces and defines some of the framework’s central topics and
terms: Command line interfaces, Terminals, and related technologies.

2http://www.codeschool.com
3http://try.github.io
4http://tryruby.org

9

http://www.codeschool.com
http://try.github.io
http://tryruby.org

Chapter 3 describes the low-level abstraction layer that communicates with
the command line process at the core of each Nut Shell tutorial. It explains and
demonstrates techniques for adapting to many different command line interfaces
and names the requirements the CLIs need to fulfill.
Chapter 4 specifies details of the domain specific language nutsh, which builds

upon the command line abstraction layer to allow simple, fast creation of new
Nut Shell tutorials. It describes the language’s lexical elements, its syntax and
semantics and explains how the language is interpreted and tested.

Chapter 6 describes application and evaluation of the Nut Shell in a study that
compared the new teaching approach with tutorials based on static text, and tried
to find out whether the former offered any benefits.
Chapter 7 provides an outlook and suggests ideas for future work.
Appendix A, starting on page 39, shows an example session of a tutorial created

for the evaluation, followed by its nutsh source code. To get an impression of the
interaction style employed by the Nut Shell, it may be beneficial to look at this
example before continuing to read.

1.3 Notation
In this thesis, grammars are specified using the Extended Backus-Naur Form
(EBNF) as used in [13]. As a convention, capitalized names represent nonterminal
symbols, whereas lowercase names represent terminal symbols. Unless mentioned
otherwise, the name of a grammar’s first production is its starting symbol.
Vertical bars (|) separate alternatives, square brackets ([]) denote optional

parts and curly brackets ({ }) denote an arbitrary number of repetitions. Tokens
are enclosed in double quotes or back quotes.

Grammars are displayed in the following style—this is also a specification of the
EBNF flavour as used in this thesis, given in EBNF itself:

Grammar = { Production } .
Production = production_name "=" [Expression] "." .
Expression = Alternative { "|" Alternative } .
Alternative = Term { Term } .
Term = production_name | token | Group | Option | Repetition .
Group = "(" Expression ")" .
Option = "[" Expression "]" .
Repetition = "{" Expression "}" .

10

2 Preliminaries

2.1 Command line interfaces
A command line interface (CLI) allows a user to communicate with a computer
program by entering lines of text, the command lines.
Commonly, interaction with a CLI consists of three phases:

1. The program writes a prompt, a special character sequence that signals to
the user that the program now expects a command.

2. The user composes a command line. Often, the CLI offers several editing
capabilities that make this process more comfortable, like a command history
or completion of nonambiguous terms when pressing Tab . To tell the program
to execute the command, the user usually sends a line feed character by
pressing the Return key.

3. The program interprets and executes the command, and displays a response.
Sometimes, the execution is interactive and requires further input. After the
command has finished, the first phase starts again.

In this thesis, the examples will use IRB, the Interactive Ruby Shell. Ruby
is an object-oriented scripting language, and, at the basic level, can be used to
evaluate arithmetic expressions. Figure 2.1 shows a few iterations of the three
phases mentioned earlier: The characters >> constitute the prompt; the following
characters, set in a bold typeface, are the commands the user typed; and the
subsequent lines are the program’s output.

Another very common command line program is Bash, the default system shell on
Linux and Mac OS X, which can be used to manipulate the file system. It supports
some convenient functions like tab-completion of filenames or advanced access to
the command history and offers many syntactic structures for manipulating streams
of text.

Further examples of command line programs include interpreters of the program-
ming languages Python, Haskell or Perl, SQL consoles or mathematics software
like gnuplot or Sage.

11

>> 2**16
=> 65536
>> Math.sqrt(2)
=> 1.4142135623730951
>> 6*7 == 42
=> true

Figure 2.1: An example IRB session.

2.2 Terminal
In the past, a computer terminal was a device for communication with mainframe
computers. They read text from the user via a keyboard and displayed the
computer’s output, first on paper, later on a screen.
Here, when we use the term terminal, we mean a modern terminal emulator,

a program that resembles a computer terminal within an otherwise graphical
environment. Inside these terminal emulators, command line programs can be run.

Terminals communicate through sequential streams of characters: They receive
characters from the user’s keyboard, send them to the program running inside, and
they receive characters back from the program to be displayed on the screen.

2.3 Escape sequences and control characters
Not only are terminals able to output text, they also provide methods to influence
its appearance and format.
Nowadays, modern terminal emulators mimic the behaviour of the classical

computer terminal VT100, introduced in 1978 by Digital Equipment Corpo-
ration [9]. This device had the following mechanism for influencing the output:
When given special character sequences to display, the terminal performed prede-
fined actions like moving the cursor, deleting characters on the screen or turning
graphical modes (underlining, colors) on or off. Because these sequences “escape”
their normal path of being displayed as text, they are called escape sequences, and
in this context indeed start with an escape character. The VT100 was not the first
terminal to handle those sequences, but its popularity caused widespread support
for its set of escape sequences, that were later specified in ISO/IEC 6429 [6].

Additionally, the ASCII characters below 32, the control characters, have special
meanings in terminals. To denote control characters, which would be invisible
otherwise, caret notation is commonly used: To represent the ASCII character of
the value n, a caret symbol (^) is combined with the ASCII character with the

12

value n + 64. For example, the backspace character has the ASCII value 8; the
ASCII character with the value 72 is H, so the caret notation for a backspace is ^H.
This notation originates from the fact that in old terminals, the control characters
could be entered by pressing Ctrl and the respective letter key. For some characters
this is still true today: For example, Ctrl + D produces end of file, Ctrl + H
produces backspace, and Ctrl + J produces a line feed character.

2.4 Readline
To make text input more comfortable, many CLIs offer a wide range of editing
capabilities. They support key combinations for deleting characters, words or whole
lines, and often maintain a history of entered commands, so that the user can
access them later if necessary.
To avoid having to implement these features themselves, many command line

programs use a library called GNU Readline [10]. This library has some default
keybindings for deleting parts of the current command and moving the cursor, which
originate from the Emacs text editor. Even if a program does not use Readline
directly, many of its bindings have become a de-facto standard for command line
editing and thus can be expected to work in a command line environment.

13

3 The CLI Abstraction Layer
The CLI abstraction layer is the framework’s lowest-level component, which wraps
around the command line process that is to be taught. It has the goal of recognizing
the different parts of the command line interaction, creating a layer of abstraction
that enables the framework to treat all supported CLIs identically. The interesting
parts in this context are the following three, which correspond to the phases
described in section 2.1:

1. Which prompt is displayed to the user?

2. Which command does the user enter?

3. What is the output of this command?

The abstraction layer is needed for two further reasons: First, the Nut Shell
needs to check conditions on the user’s commands or the output. Second, it allows
the Nut Shell to run commands itself, hidden to the user, while having access to
the same state of the command line system. The sophisticated methods described
in this chapter are necessary to keep all editing features intact, including tab
completion and usage of the command line history.

This thesis treats the targeted command line process as a black box having input
and output streams of Unicode characters. The CLI abstraction layer watches and
modifies these streams as described in the following sections.
The main idea here is to use two special markers, unique character sequences

that are unlikely to appear in normal command line interaction, to annotate the
output of the process. A suitable choice for those markers are Unicode code points
from the Private Use Area, which are guaranteed not to be assigned any meaning
[11, p. 558], for example U+E100 and U+E101. We call these marker1 and marker2.

3.1 Targets
The Nut Shell is designed to support as many different command line interfaces as
possible; examples of command line programs can be found in section 2.1. When
we talk about one of these programs, we call it the Nut Shell’s current target.

14

As these programs can have different internal implementations, the abstraction
layer has to rely on common features, that can be found in all of them. As
described in the preliminaries, fortunately many CLIs used today follow the same
conventions.
For the abstraction layer to work, a command line program needs to have two

features:

1. User customizable prompts.

2. Readline-style keybindings. Mandatory are these three key combinations:
• Ctrl + E has to jump to the end of the line.
• Ctrl + U has to delete the momentarily entered line and puts it in an

internal buffer.
• Ctrl + Y has to reinsert the content of this buffer.

All command line programs mentioned in section 2.1 have those features and
thus can be used as targets.

3.2 High-level architecture
Figure 3.1 depicts the architecture of the abstraction layer. The command line
process at the bottom has input and output streams of Unicode characters. The
output is read by the Tokenizer, which splits it into tokens of the types “prompt”,
“command”, or “output”. In addition to that, the Tokenizer sends characters to the
Logic component that originate from interactive programs and need to be displayed
before the token is complete. The logic component can then check conditions on
the tokens and send appropriate text to the terminal.

On the input side, the user’s input, originating from the Terminal, is modified by
the Input filter in the manner described in the upcoming section 3.4. The result is
then given to the process as standard input. The Input filter processes commands
given by the Logic component in the same way. This channel is used for commands
that check conditions in the process.

The EBNF grammar shown in the following sections describe how the tokenizer
processes the output of the command line to split it into tokens.
At a high-level view, the output of the process as a whole consists of three

segments: The first segment is the prompt, enclosed in markers, as explained in
the following section. The second segment contains characters entered by the user
while composing the command; the segment may include escape sequences and
control characters, which are produced while performing editing operations. The
final segment contains the command’s output, that simply consists of nonmarker
characters. This sequence of segments can repeat indefinitely:

15

CLI process

Input filter Tokenizer

Logic

Terminal

Keyboard Screen

tokens

Figure 3.1: Information flow between the Nut Shell’s components. Unlabeled
streams carry Unicode characters.

Output = { PromptWithMarkers CommandComposing CommandOutput } .
CommandOutput = { NonMarker } .
NonMarker = /* every character except marker1 and marker2 */ .

3.3 Recognizing the prompt
The prompt is the easiest component to recognize. As the prompt of the target
process can be changed (by definition, see section 3.1), the Nut Shell configures
the prompt to start and end with marker1. Looking at the output, the prompt can
now be identified nonambiguously. The markers are skipped and are not displayed
to the user.
In this part of the grammar, the token we are really interested in is Prompt:

PromptWithMarkers = marker1 Prompt marker1 .
Prompt = { NonMarker } .

This approach has a downside: In some command line programs it is possible to

16

change the prompt from within the program. If the user tries to change the prompt
himself, the tokenizer will probably break.
To add support for a new command line program to the Nut Shell, one has

to create a profile that specifies which options and commands are necessary to
configure the prompt so it begins and ends with markers.

3.4 Recognizing the command
When the user enters characters with the keyboard, normally, these characters are
immediately displayed on the screen. This means that in the phase of entering a
command, the input of the underlying process is equal to its output.

Unfortunately, this is only true for visible characters. While editing the command
line, a user may use Readline’s key bindings or other shell built-in key combinations
that modify the currently entered command in unusual ways. These make it hard
for the framework to recognize which command the user entered, as parts of the
entered characters could have been deleted, otherwise have been changed, or—even
worse—have been generated by the program and never have been entered by the
user, as it happens with tab completion. To solve this problem, the Input filter
component deploys a mechanism to repeat the entered line before it is sent.

When the user is done editing the command, wants to run it and produces a line
feed character by pressing Return , the Nut Shell does not send this character to
the process. Instead, it proceeds in the following way:

1. The cursor is positioned at the end of the line using Ctrl + E . This is
necessary as the user could have positioned the cursor somewhere inside the
command.

2. A space character is inserted. This prevents problems when the command
was completely empty before, as the following step would not do anything in
this case.

3. The whole line is deleted and put into an internal buffer using Ctrl + U .

4. A marker1 is inserted and immediately deleted afterward, so it does not end
up in the command later.

5. The deleted command is reinserted using Ctrl + Y .

6. Another marker1 is inserted and deleted.

7. The space character that was inserted in step 2 is deleted.

17

Table 3.1: Example of the command marker technique.
Keystrokes Input Output Screen content

1 >> >>
2 1 - 1 1-1 1-1 >> 1-1
3 ^[[D ^H >> 1-1
4 backspace ^H ^H >> 1-1
5 ^[[1P >> 11
6 + + + >> 1+
7 1 >> 1+1
8 ^H >> 1+1
9 ^E ^[[C >> 1+1
10 >> 1+1
11 ^U ^H^H^H^H >> 1+1
12 ^[[K >>
13 marker1 marker1 >> marker1
14 ^H ^H^[[K >>
15 ^Y 1+1 >> 1+1
16 marker1^H marker1^H^[[K >> 1+1
17 ^H ^H^[[K >> 1+1

8. Finally, a line feed character is written to the process to start execution of
the command.

To summarize, this is the whole sequence as it is sent to the process:

Ctrl + E space Ctrl + U marker1 backspace Ctrl + Y marker1
backspace backspace

Because Ctrl + Y repeats the whole command as the user intended to run it, it
now appears in the output neatly framed by the two markers. The screen’s content,
however, looks the same to the user.

Table 3.1 demonstrates the technique in a prototypic example. The first column
lists the user’s keystrokes, the second one contains the characters sent to the process,
the third one contains the output of the process, and the final one shows the current
content of the screen. The gray rectangle indicates the cursor position. In the
example, the program first writes a prompt. The user enters 1-1, and then replaces
the - character with a + using arrow keys and backspace. The first three characters
are routed from the program’s input to its output literally. In line 3, the left arrow
key sends the escape sequence ^[[D to the program, which means “move the cursor
backward”. In the output, this is transformed to ^H, a backspace character, which

18

has the same effect in the terminal. In line 4, the backspace character in the input
is translated into ^H (move the cursor backwards) and ^[[1P (delete one character)
in the output. The minus sign is now no longer displayed on the screen. In line 6,
the insertion of the + character has the following effect: The + and the text after
the cursor (a 1) is rewritten, and the cursor is then moved back to its position
inside the command using ^H.
From the content of the “Output” column up to line 9, it is hard to recognize

the actual command 1+1 (which is displayed on the screen) because of the inserted
escape sequences and control characters. When the user presses return, it is not
forwarded, but the previously described sequence is sent to the process instead.
In line 9, the cursor is moved to the end of the line using ^[[C (move the cursor
forward). In line 11, the command is deleted by moving the cursor to the beginning
of the line with ^H and clearing the terminal’s current line from the cursor to
the right with ^[[K. After that, no new escape sequences appear: The marker is
inserted and deleted, the command is repeated, another marker is inserted and
deleted, and finally the space character is removed.
When reading the “Output” column, the correct command 1+1 now appears

neatly between the two markers. The first marker is followed by a deletion sequence,
and the command is always followed by a space character. By removing both, the
exact command the user wanted to enter can be extracted.

To summarize, for the tokenizer, the composing sequence has two phases: In the
first one, the actual command line composing takes place. In the second one, the
current line is deleted and reprinted as described earlier. The interesting part here
is Command:

ComposeAndRepeat = LineComposing LineRepetition .
LineComposing = { NonMarker } .
LineRepetition = space Deletition Marker Deletion Command

Marker Deletion "\r" .
Deletition = { deletition_sequence } .
Command = { NonMarker } .

Multi-line commands
Before execution, some CLIs check whether an entered command is somehow
incomplete: It could, for example, lack a closing parenthesis, or end with an
operator. In this case, the program does not execute the command, but gives the
user the possibility to finish it. For this purpose, the CLI usually displays a prompt
which is different to the primary prompt, so that the user can tell the difference.
The framework inserts the second marker into this secondary prompt, so that it

19

can be appropriately recognized, as well.
After the previously described line repetition, the tokenizer looks at the next

character—if it is a secondary-prompt-marker, it knows another composing-and-
repeating step will follow, as the user will now type a second line:

SecondaryPromptWithMarkers = marker2 Prompt marker2 .
CommandComposing = ComposingAndEcho

[{ SecondaryPromptWithMarkers ComposingAndEcho }] .

When no secondary prompt follows, all previous occurrences of the Command token
are appended to get the full command.

3.5 Command line operations
Using the described techniques, the abstraction layer is able to tokenize the pro-
gram’s output. It sends the resulting tokens to the program logic, which can then
perform two important operations:
The logic can prompt the user for a command. The first Prompt token that is

received is written to the terminal. The recomposed Command tokens are stored as
the user’s command, and the following Output token is stored as the command’s
output. The characters which make up the command line’s output are also sent to
the logic through the second channel (see fig. 3.1). These characters are displayed
on the terminal, so the user can see what he is typing and can use interactive
programs that require him to enter further text before the command’s execution
terminates.
The second important operation is to send a command to the CLI to check a

condition or to change the program’s internal state. To do this, the command is
sent directly to the Input Filter. The command and output tokens are captured as
before, but their content is not displayed to the user.

20

4 The nutsh Language
To enable authors to write tutorials for the Nut Shell quickly, the framework
includes a new imperative domain-specific programming language (DSL). This
language is called nutsh, a contraction of “Nut Shell”. Files written in the nutsh
language represent “lessons”, self-contained teaching units.

4.1 Design goals
The lesson’s source code should be as easy to read and write as possible. To achieve
this, nutsh uses a syntax that in large parts resembles languages that potential
users already may know. In this case, it resembles the syntax of C, with some
influences of Google Go [3], for example in the definition of string literals and the
syntax of conditional clauses. It also uses regular expressions and a few elements
of the markup language Markdown.

Another design goal was to keep the language as small as possible, while making
it powerful enough for the intended purpose. For this reason, its only data type is
a string of Unicode characters. Variables also proved unnecessary.
The language contains syntactic structures that allow efficient expression of

often-used semantical constellations. It also allows basic function definitions to
reuse code snippets and minimize redundancy.
The following sections specify the language’s lexical and syntactical elements

and describe their semantics.

4.2 Lexical elements

Comments
nutsh has two types of comments, as they exist in C-like languages: Line comments
start with // and stop at the end of the line, block comments start with /* and
end with */. Comments act as white space and are ignored otherwise.

White space
Whites space consists of line feeds, carriage returns, tab and space characters. It
separates tokens but has no further meaning.

21

Identifiers
Identifiers serve as names that can be used for functions. An identifier is a nonempty
sequence of alphanumeric characters.

Identifier = alnum_char { alnum_char } .

Keywords
nutsh uses the following keywords, which must not be used as identifiers:

break def else if prompt return

Operators and delimiters
The following character sequences have special meanings in nutsh:

=~ == || , ! () { + } &&

String Literals
There are two types of string literals: raw string literals and interpreted string
literals. Raw string literals are enclosed in back quotes (`). They may contain
any character except the back quote; other characters are interpreted literally.
Interpreted string literals are enclosed in double quotes (") and may contain
backslash escaped characters, like \n for a newline or \" for a double quote, and
byte values in hexadecimal (\x??) or octal form (\???).1

string = raw_string | interpreted_string .
raw_string = "`" { unicode_char } "`" .
interpreted_string = `"` { unicode_char | escaped_char |

byte_value } `"` .

4.3 Syntax and semantics
4.3.1 Expressions

String Expressions
The nutsh language makes strong use of strings ("foo"). String expressions
can be concatenated ("foo"+"foo" has the same value as "foofoo") and be

1Due to the implementation, nutsh accepts strings of the same format as Go. The full specification
can be found at [3].

22

checked for equality ("foo" == "foo"). Additionally, it can be checked whether a
string matches a regular expression ("foo" =~ "f[aio].").2 Every string can be
interpreted as a truth value, which is false for an empty string and true otherwise.
The common boolean operators (! for not, && for and, and || for or) are defined
accordingly. They return the (arbitrary) nonempty string "true" as a truth value.

StringExpression =
string | Call | StringExpression Operator StringExpression |
"!" StringExpression | "(" StringExpression ")" .

Operator = "+" | "==" | "=~" | "&&" | "||" .

Operator precedence
String concatenation binds strongest, followed by the two comparison operators,
logical not, logical and, and finally logical or. Operators bind from left to right:
a OP b OP c has the same meaning as (a OP b) OP c.

Calls
nutsh knows functions, which can be called by specifying the correct number of
arguments. If a function takes no arguments, the brackets can be omitted. As
a special case, a string on its own also acts as a function call, see the following
section.

Call = identifier ["(" [StringExpressions] ")"] | string .
StringExpressions = StringExpression { "," StringExpression } .

4.3.2 Built-in functions
A central command in nutsh is the output of explanation text. This text will be
displayed indented and highlighted in a different color.

say("This is explaining text.")

Because this command is used so often, it can be abbreviated to:

"This is the short form."

The say function supports two ways of highlighting parts of the text: Text enclosed
in back quotes will be displayed in a second color, text enclosed in asterisks in a

2Using the syntax of the regular expression parsing library RE2 as described here: http:
//code.google.com/p/re2/wiki/Syntax

23

http://code.google.com/p/re2/wiki/Syntax
http://code.google.com/p/re2/wiki/Syntax

third. As a convention, back quotes are used to mark parts of commands or file
names, and asterisks are used to emphazise parts of a sentence. These conventions
have been adopted from John Gruber’s Markdown.3

The run function executes a command in the target process, it takes a command
line in the target language as an argument. The return value of this function is
the command’s output. The function can be used to check for conditions in the
command line environment.

run("1+1")

4.3.3 Statements

Blocks
A block is a sequence of lines:

Block = "{" { Line } "}" .
Line = IfStatement | PromptStatement | NestingStatement | Call .

If statements
If the conditional expression of an if statement evaluates to true, the first block is
evaluated, otherwise the (optional) second block. There are no brackets around
the condition.

IfStatement = "if" StringExpression Block ("else" Block) .

This example checks a string for equality with itself and prints an according message:

if "test" == "test" {
"Everything is OK."

} else {
"Wait, what?"

}

Prompt statements
The prompt statement is another central element of nutsh’s syntax. It has the
semantic of an endless loop, in which a command is read from the user at the
beginning of each pass. This way, it can be used to represent a state in the tutorial,
in which the user can execute commands. The prompt loop can be left with a

3http://daringfireball.net/projects/markdown/syntax

24

http://daringfireball.net/projects/markdown/syntax

break statement.

PromptStatement = "prompt" Block .

There are two built-in functions called command and output, that correspond to
the user’s latest command and its output. When no prompt has occurred yet, they
return empty strings.

In this example, the user is asked to enter a command that has the output “42”.
When he obeys, the prompt loop is left with a break statement, otherwise he has
to try again:

"Please calculate the product of 6 and 7."

prompt {
if output == "42" {

break
} else {

"Please try again."
}

}

"Well done!"

Function definitions
To define a new function, the def keyword is used, followed by the name of the
function, optional arguments and a block. If a function has no arguments, the
brackets around the arguments can be omitted:

Definition = "def" identifier [Arguments] Block .
Arguments = "(" [identifier { "," identifier }] ")" .

As an example, we define a function that prints its argument twice, and call it:

def say_twice(text) {
say(text)
say(text)

}

say_twice("Hey!")

25

Nesting statements
Sometimes, the same set of conditions needs to be checked for a group of prompt
statements. In this case, nesting statements can be used. They consist of one or
more function calls, followed by a block.

NestingStatement = Calls Block .
Calls = Call { "," Call } .

Inside a nesting statement, the specified calls are executed each time after the user
has entered a command. There can be more than one level of nesting—the outmost
nested functions are called first.

In this example, a function is defined that prints a message when the user enters
a command that contains “help”. For two prompt statements, a nesting statement
is defined to call this function. Now, every time the user enters a command in these
two prompt loops, the function is called. For another example of this syntax, refer
to the implementation of the example lesson in appendix A, starting on page 41.

def respond_to_help {
if command =~ "help" {

"Sorry, you’re on your own."
}

}

respond_to_help {
prompt {

// break condition ...
}
prompt {

// break condition ...
}

}

4.3.4 Top level structure
A nutsh file consists of several function definitions and other Line instances (if-,
prompt- and nesting statements in addition to calls, see section 4.3.3). Thus,
function definitions can only appear at the top level to avoid redefinitions in
different scopes, which would lead to name masking problems and a much higher
complexity. Lesson is the start symbol of nutsh’s grammar:

Lesson = { Definition | Line } .

26

4.4 Parsing and interpretation
nutsh has a LR(1) grammar, which means that it can be parsed by a bottom-up
parser reading from left to right in a single pass, creating a rightmost derivation.
For parsing, nutsh uses a standard LALR(1) parser generator, more details can
be found in chapter 5. The parser creates a syntax tree whose nodes have a string
value and an arbitrary number of child nodes. For leaf nodes, the string value
represents the lexical value, for inner nodes, it represents the node’s type.
When a function definition is encountered, the definition node along with its

children is added to the symbol table. After it has been defined, the function can
be called until the end of the source file. As functions can only be defined at the
top level, no dedicated scoping is necessary.
When evaluating a string expression, a node’s value can be calculated from its

children’s values, the attribute is synthesized. This makes an evaluation of the
syntax tree especially easy, as the interpreter can now travel through the tree in a
bottom-up manner. nutsh uses lazy evaluation: An expression is only evaluated
when it is needed.

The arguments to a function, however, are always evaluated, the resulting value
is bound to the corresponding argument name in the function (pass-by-value),
implicitly defining new functions for each argument, which simply return the
argument’s value.

While traversing the syntax tree, the interpreter keeps track of the encountered
nesting statement’s function calls, which are pushed on a stack when entering the
nesting statement and which are removed when leaving it. When a prompt node is
encountered, the CLI abstraction layer is used to prompt the user for a command.
The command and its output are saved so they can be accessed when the input
and output functions are called. After that, the calls in the nesting stack are
executed from bottom to top. Finally, the block inside the prompt statement is
evaluated.

4.5 Automated testing
As a tutorial author, one wants to verify that all lessons work correctly. The
framework provides a facility for automated testing, so the author does not have
to enter all required commands by hand to test his tutorial.
The framework provides the built-in function expect, which expresses the as-

sumption of the lesson’s author that if a user were to enter the supplied argument as
a command in the innermost surrounding prompt statement, the expect statement
would be reached.

In this example, the string variable text is defined. The user is then asked

27

to reverse it. The expect statements give two different ways to achieve that—
both should work. There’s also an expect statement that should not lead to an
evaluation of the first block:

run("text = ’stressed’")
"Reverse the content of `text` and save it in `text2`!"
prompt {

if test("text2 == ’desserts’") {
"You did it!"
expect("text2 = text.reverse")
expect("text.reverse!; text2 = text")
break

} else {
expect("text2 = ’somethingdifferent’")

}
}

The testing algorithm first collects all expect statements and creates a reference
for each of them in the nearest surrounding prompt statement. Each is marked as
“unreached”.

It then starts interpreting the file like normally, but when a prompt statement
is encountered, instead of querying the user for a command, one of the unreached
associated expect commands is used. When the respective expect statement
indeed is reached, the statement is marked as “reached”. When the end of the
prompt loop is encountered, and the expect has not been reached, an error is
printed and the test is aborted. At the end of the file, if there are any unreached
expect statements left, the lesson is restarted.

By convention, when a prompt is encountered whose expect statements all are
reached, the first one is used. Thus, the first expect in each prompt should be
one that leads to a break statement to ensure the testing algorithm terminates. A
more flexible approach would be to create a control flow graph for the lesson and
ensure that every branch is considered while testing by choosing expect statements
that lead to not yet tested parts of the lesson.

28

5 Implementation
The framework has been implemented in Go [3], a young, compiled, statically typed
language, which is seen by many as a modern successor to C. This language was a
good fit for the Nut Shell as it is fast, was created with low-level programming in
mind, and has a big standard library with built-in support for Unicode and UTF-8.
In total, the implementation consists of 2576 source lines of code.

The implementation uses folders to represent tutorials, which can contain several
lesson files written in the nutsh language. A configuration file named info.yaml
specifies the tutorial’s name and the target command line program that is to be
used. A file called common.nutsh can be used to define functions that are included
in every lesson.

The source code is organized in four subpackages: The cli package implements
the command line abstraction layer as described in chapter 3. It uses the pty
package1 to emulate a terminal, and starts a thread for each component in fig. 3.1.
Go’s built-in support for concurrency and synchronized communication between
threads came in handy here.
The dsl package uses the abstraction layer to provide an internal API that

allows easy access to important operations, like starting and destroying command
line processes, prompting the user for a command or sending a hidden query to the
command line, as described in section 3.5.
The model package understands the directory structure described earlier, and

provides operations like initializing a tutorial, presenting a list of lessons to the user
to choose from, or saving the current progress. The progress simply consists of a list
of finished lessons, so they can be displayed as “done”. The goyaml package2 was
used to read and write configuration files written in the YAML markup language.
Finally, the parser package is responsible for lexing, parsing, interpreting and

testing single nutsh files as described in chapter 4. For parsing, this package uses
YACC, a widely used LALR(1) parser generator that takes a list of token types, a
grammar description and an operator precedence declaration and then generates a
function that receives tokens from the lexer and parses them. Go comes with its
own YACC implementation.3

1http://github.com/kr/pty
2http://launchpad.net/goyaml
3http://golang.org/cmd/yacc/

29

http://github.com/kr/pty
http://launchpad.net/goyaml
http://golang.org/cmd/yacc/

6 Application and Evaluation
To find out whether the tutorials created with the Nut Shell has any advantages
compared to traditional teaching methods, we created an example tutorial and
conducted a two-week course with a subsequent survey.

6.1 Setting
The Institute for Programming and Reactive Systems at the Braunschweig
University of Technology has been organizing preparatory computer science
courses for freshman students since 2003. This course teaches how to use UNIX-like
operating systems and accompaning tools for program creation.
Until now, these topics were tought by handing out exercises on paper, which

the students could work on in computer pools. For support, student assistants
were provided, with about one assistant per 40 students.

In the fall semester 2013–2014, 150 students enrolled in the course. For this
study, the students were split into two groups: Two thirds of the students were
randomly selected to use the Nut Shell, the remaining one third worked with the
previously used exercises on paper. The groups worked in two separate rooms.
Each day, there were three time slots of 75 minutes each, to which the students
were assigned in equal parts. The course spanned over eight days, not including a
weekend and a day off.

The course roughly covered the following topics: The UNIX file system and
how to manipulate it; various text editors like Vim, Emacs, and Gedit; process
management; command line tools for text manupulation like grep, sort, or patch;
various shell mechanism like output redirection and the command history; shell
scripts; automatition with Makefiles; accessing remote servers with SSH; typesetting
documents with LATEX; understanding and repairing programs written in Java; and
version control with Git.

The newly created Nut Shell tutorial kept these topics and their order. The
material was divided into 30 invidiual lessons, each of which covered one specific
topic. Each day, new lessons were made available. In total, the tutorial contained
2875 lines of nutsh code. It took about 30 hours to write and test the lessons.
Refer to appendix A for an example lesson. Appendix B gives a complete list of
the created lessons.

30

6.2 Style
The basic structure in the Nut Shell tutorial when introducing new concepts is the
following: First, a general problem is stated. The method or tool for solving this
class of problems is presented using a simple example, in which the user is guided
exactly what to do. After that follow several problems of increasing difficulty which
the user has to solve on his own. Finally, some advanced concepts and ideas are
mentioned, and the user is given some free room to experiment with those. A clear
signal is communicated that the user can use to continue.
Often, goals are stated, but how to achieve them is up to the user. This is

realized by testing against output() and especially run() statements. At several
occasions, the user can choose among several paths to continue or can determine
in which order to learn about several topics. These structures are supposed to give
the user a feeling of autonomy and control.

For better illustration and for a more entertaining experience, the lessons intro-
duce several real-world metaphors for abstract concepts. For example, in a lesson
about the compression of files, the user is confronted with a directory named fridge
and a large file named elephant and is asked to put the elephant in the fridge.1
To complete this task, the file has to be compressed. The lessons took place in a
virtual environment that consisted of several directories named kitchen or bedroom
and often involved files named after real-life objects.

6.3 Survey
After the sixth day, an online survey was conducted whithin both groups. In the
first part, the following general questions were asked (in German):

• On a range from 1 (not at all) to 10 (entirely), how much do you agree to
the following statements?
1. I had previous knowledge about the command line.
2. The tutorial was fun.
3. I learned a lot in the tutorial.
4. The exercises were too hard.
5. I had enough time to complete the exercises.
6. I think the material is relevant for my further education.
7. I would recommend the tutorial to others.

1This is a reference to the old joke “How do you put an elephant into a fridge? – Open the
fridge, put in the elephant, and close the door.”

31

• How many times did you have to ask for help per day?

The second part of the survey was a test with 11 questions about different
topics of the tutorial, in an attempt to quantify how much the participants learned.
The following questions were provided by a person who was uninvolved with and
unaware of the content of the Nut Shell lessons to avoid a bias which could have led
to asking questions the author knew the Nut Shell explained well. For evaluation,
each answer was marked with either 0 points (no or wrong answer), 0.5 points
(partly correct), or 1 point (complete and correct answer).

1. How do you create the directory abc.txt?

2. How do you copy the file abc.txt to the directory xyz?

3. How can you obtain more information about the command mv?

4. Name at least two ways to look at the content of the file abc.txt.

5. What is the command ln used for?

6. Print all lines of the file abc.txt that contain the text “Hello”.

7. What is the variable PS1 used for?

8. What do you use > and >> for and how do they differ?

9. How do you archive and compress all files with the ending “123” in the current
directory?

10. What is the file ~/.bashrc used for?

11. You don’t want to type ls -alR all the time, but create a short hand form.
Which possibilities do you have and what are the corresponding commands?

12. What are pipes used for and how do you use them? Write an example
command.

The third batch of questions was only given to the students who had used the Nut
Shell. It was intended to assess strengths and weaknesses of the created tutorial.
Again, they were asked to rank the statements on a scale from 1 to 10:

• The Nut Shell did a good job explaining new material.

• When I encountered problems, the Nut Shell gave helpful hints.

• The exercises were helpful to understand the topics on hand.

• When attending another course, I would like to use the Nut Shell again.

32

6.4 Results
For the survey’s first part, there were 64 answers in total. 53 of the participants
specified they had used the Nut Shell, 11 of them had used the exercise sheets.
Figure 6.1 juxtaposes the answers to the general questions in both groups in the
form of a box plot: The circle marks the median of the answers to each question,
the box contains 50% of the answers, the whiskers reach from the minimum to the
maximum answer. The Nut Shell users had more fun and had the impression of
having learned more than the exercise users. The unpaired two-sample t-test [4]
yields p-values of 0.054 respectively 0.060, which means that there is a chance of
5–6% that this difference is accountable to random. While there is slight evidence
that the Nut Shell users found the course easier, had less time, and thought of the
topics to be more relevant, these differences are not statistically significant.

Figure 6.2 shows the answers to the question regarding how many times per day
the participants needed support from a student assistant. Clearly, the Nut Shell
users only needed half as much help compared to the exercise users.
Figure 6.3 shows the distribution of test scores. The hightest achievable score

was 12. The test was filled out by 53 people: 43 were users of the Nut Shell and 10
used the exercise sheets. On average, the exercise sheet group achieved a slightly
higher score, but again, this result is not statistically relevant.
Figure 6.4 shows the answers to the Nut Shell related questions. The initial

explanations as well as the exercises received high scores, with a median of 9,
the tips for solving the exercises received a median score of 7. Over half of the
participants would like to use the Nut Shell again for a future tutorial.

Figure 6.5 shows the number of participants per day in both groups. In this case,
from the initial 80 Nut Shell users, 63.8% stayed until the last day. Of the exercise
sheet users, only 24.4% of the initial 45 stayed. On the next-to-last day, 83.8% of
the Nut Shell users and 33.3% of the exercise sheet users attended. Of the 52 Nut
Shell students who attended on the last day, 42 (80.8%) actually completed the
tutorial.

6.5 Discussion
The small number of participants in the exercise sheet group who participated in
the survey is a problem for proper evaluation: The results are likely to be warped,
as just those participants who had fun and learned something stayed, while the
students that were bored or learned nothing stopped attending the course.
That is why the evaluation approach shifted toward looking at the number of

participants over time. According to the course’s organizers and former assistants,
the high participant loss that occurred in the exercise sheet group is indeed typical

33

1 2 3 4 5 6 7 8 9 10

Prior knowl.

Fun

Learned a lot

Too hard

Enough time

Relevant

Recommend

Nut Shell
Exercise Sheets

Figure 6.1: Answers to general questions.

34

0 1 2 3 4 5 6 7 8 9 10

Help/day

Nut Shell
Exercise Sheets

Figure 6.2: Times the participants had to ask for help per day.

0 1 2 3 4 5 6 7 8 9 10 11 12

Score

Nut Shell
Exercise Sheets

Figure 6.3: Points that the participants got in the test.

and representative. This could mean that the Nut Shell lesson motivated the
students more to attend to the course. From a lecturer’s perspective, this result
of having 63.8% of the students attending over the whole timespan, is highly
gratifying.
Another positive result is the lowered demand for external help the Nut Shell

users had. On the one hand, this is pleasing for the students themselves, as they
can learn more independently—for example, from home, where no external help is
available. On the other hand, the number of required student assistants can be
lowered, leading to reduced costs for the university while apparently maintaining
about the same quality of education.

35

1 2 3 4 5 6 7 8 9 10

Explanations

Tips

Exercises

Use again

Figure 6.4: Answers to Nut Shell related questions.

1 2 3 4 5 6 7 8 9 10 110

10

20

30

40

50

60

70

80

Day

Pa
rt
ic
ip
an

ts

Nut Shell
Exercise Sheets

Figure 6.5: Number of participants per day. Days 6 and 7 were a weekend, there
was no course on day 10. From bottom to top, the bar’s segments
represent first, second and third time slot.

36

7 Conclusions and Future Work
Because of the evaluation’s positive outcome, the Nut Shell will be used for the
upcoming preparatory courses exclusively. Another institute has already shown
interest to use the Nut Shell for a more in-depth course on the version control
software Git. During the preparatory course, a participating student told us he
would like to use the Nut Shell to teach command line concepts to pupils at his old
school.
The student’s general feedback during the evaluation was very positive. Some

were eager to install Linux on their own computers so they could continue to use
the tutorial. Some requested that the Nut Shell should be made available in all
the university’s Linux computer rooms. Another path was chosen: Because the
program is a terminal application, it can be used remotely via an SSH connection.
It is now possible to use the Nut Shell on the university’s shell server from virtually
everywhere.
Development of the Nut Shell will continue. The software and the tutorial will

be released under a free, open source license to allow everyone to use them and to
create new tutorials using the nutsh language.

Future work
There is a lot of potential for further development. Right now, typing errors can
only be catched by defining appropriate command checks by hand. The expect-
statements could be used to automate the detection of these errors by measuring
the edit distance1 between the entered and the expected commands. When the
distance falls below a certain threshold, the correct command could be suggested
to the user.

Although the syntax of the prompt statement clearly communicates its semantic
structure, in practical use it seems cumbersome, as it is repeated so often. The
syntax could be simplified here, so that blocks of if clauses imply a prompt
statement around them. Another language element for preventing this automation
would have to be added as well.

Right now, the lessons of a tutorial follow a linear order. It would make sense to
structure them as a dependency graph, in which the tutorial’s author can specify

1For example, the Levenshtein distance, that detects insertions, deletions and substitutions [7].

37

for each lesson, which other lessons have to be finished before. This would give the
user more freedom to navigate through the tutorial autonomously.
The users’ feedback while using the tutorial can be very valuable to improve it.

This feedback collection could be automated by recording the user’s interaction
and tracking their progress over time. For example, when users do not reach new
prompt statements for a longer time period, or enter disproportionately many
commands in one prompt loop, this could indicate that this section is too hard
and should contain more hints. Misspelled or unhelpful commands could also be
automatically collected, analyzed, and be presented to the author so that he can
add appropriate hints to the lesson.

38

Appendix A

Example nutsh Lesson
This chapter contains an actual lesson from the preparatory course, translated into
English. The lesson explains how to compress files and directories using UNIX
command line tools—the students already learned how to move and display files.
The first listing demonstrates how the lesson looks like during execution. Text

set in a bold typeface is entered by the user, the italic tutorial text would be
displayed in a different color. The second half of the chapter, starting on page
page 41, displays the lesson’s nutsh source code.

Do you know the old joke "How do you put an elephant into a fridge?"

"Open the fridge, put in the elephant, and close the door". Try it, we
delivered a fresh elephant into your kitchen!

$ cd kitchen
$ ls
elephant fridge/
$ mv elephant fridge

[The elephant does not fit into the fridge]

Oh, it doesn’t seem to be that easy. Can you find out how big the file
is? The man page of ls will help you!

$ ls
elephant fridge/
$ man ls

[Display of the man page, skipped here]

$ ls -l
-rw------- 1 seb users 10485760 27. Okt 22:25 elephant
drwx------ 2 seb users 4096 27. Okt 22:25 fridge

Okay, about ten million bytes. ls has the option -h to display that in
a more comprehensible order of magnitude.

39

$ ls -sh
10M elephant 4.0K fridge

10 megabytes? Indeed, the fridge isn’t that large.

We have to make the elephant smaller. There are several ways to
compress files - one of the most common under Linux is gzip.
Compress the elephant with that program and look at it’s size again.

$ gzip -f elephant
$ ls -sh
3.4M elephant.gz 4.0K fridge

That sounds much better.

Because that went so well, we’ve delivered a second elephant to the
hallway. Get it into the kitchen and and compress it, this time with
bzip2. How large is the file this time?

$ ls ..
bedroom/ elephant2 kitchen/ livingroom/
$ cp ../elephant2 .
$ bzip2 -f elephant2
$ ls -sh
1.9M elephant2.bz2 3.4M elephant.gz 4.0K fridge

The bzip2 compression algorithm takes more time, but creates smaller
files.

The two compressed elephants now fit in the fridge comfortably! (Hint:
Using wildcards you can move both files at once!)

$ mv elephant* fridge

These commands only compress single files. To compress a folder, you
have to combine it and its contents to a single file, you can do that
with tar -c -f name_of_the_archive.tar folder.

-c stands for "create", -f for the name of the resulting file. tar is
short for "tape archive" originates from the good old times, when
magnetic tapes were used to store files.

Please combine the fridge to fridge.tar.

$ tar -c -f fridge.tar fridge

The compression commands replace the original file, but tar
leaves the source folder intact. Please delete the original fridge.

40

$ rm -rf fridge

Good, and now compress the so-called "tar ball" with a compression
method of your choice.

$ gzip fridge.tar

You can now pick up the compressed fridge with the compressed
elephants, put it in your pocket and take it with you. :-)

And eventually, we want to get the elephants back. Reverse your steps
and put both elephants back into the kitchen.

Use the commands gunzip and bunzip2, as well as tar with the arguments
-x -f name_of_the_archive.tar (-x means "extract").

$ tar xzf fridge.tar.gz
$ gunzip fridge/elephant.gz

[The elephant does not fit into the fridge]

$ bunzip2 fridge/elephant2.bz2

[The elephant does not fit into the fridge]

Enjoy your meal! When you’re ready to complete the lesson, say "done"!

$ echo done
done

And here is the lesson’s nutsh source code. The first file contains some reusable
functions shared by all lessons, the second one is the actual lesson. The source
code demonstrates all of nutsh’s syntactic structures and is commented as needed.

common.nutsh
// create a folder as an environment for the lesson
def make_home {

run(`ROOT="$HOME"/.nutsh`)
run(`mkdir -p "$ROOT"`)
run(`cd "$ROOT"`)
run(`mkdir -p kitchen bedroom livingroom`)

}

// return the exit code of the last command
def exit_code {

return(run("echo $?"))
}

41

// check a conditional expression using bash’s "[[]]" syntax
def test(condition) {

run(cmd)
run("[["+condition+"]]")
return(exit_code == "0")

}

// check whether the directory ’d’ exists
def dir(d) {

return(test("-d \""+d+"\""))
}

// check whether the file ’f’ exists
def file(f) {

return(test("-f \""+f+"\""))
}

// was the last command "echo done" or "echo ready"?
def done {

return(command =~ `echo\s+(done|ready)`)
}

compress.nutsh
make_home

// create a file that contains 10 MiB of ascending numbers
run(`seq 1 2000000 | tr -d ’\n’ | head -c $((1024*1024*10)) >

"$ROOT/kitchen/elephant"`)

"Do you know the old joke \"How do you put an elephant into a fridge?\""

"\"Open the fridge, put in the elephant, and close the door\". Try it, we
delivered a fresh elephant into your kitchen!"

// check whether there’s an elephant (with suffix ’n’) in the fridge
def elephant_in_fridge(n) {
return(file(`"$ROOT/kitchen/fridge/elephant"`+n))

}

// when there’s an elephant in the fridge, show an error and remove it
def stop_elephant(n) {
if elephant_in_fridge(n) {
"[The elephant does not fit into the fridge]"
run(`mv "$ROOT/kitchen/fridge/elephant`+n+

`" "$ROOT/kitchen/elephant"`+n)
}

}

42

prompt {
if elephant_in_fridge("") {
stop_elephant("")
expect("cd kitchen; mv elephant fridge")
break

}
}

// using a nesting statement, disallow elephants in the fridge for the rest
// of the tutorial
stop_elephant(""), stop_elephant("2") {
"Oh, it doesn’t seem to be that easy. Can you find out how big the file
is? The manpage of `ls` will help you!"

prompt {
if output =~ "10M" {
expect("ls -sh")
"10 megabytes? Indeed, the fridge isn’t that large."
break

}
if output =~ "10240" {
expect("ls -s")
"Okay, about ten thousand kilobytes. `ls` has the option `-h` to
display that in a more comprehensible order of magnitude."

}
if output =~ "10485760" {
expect("ls -l")
"Okay, about ten million bytes. `ls` has the option `-h` to display
that in a more comprehensible order of magnitude."

}
}

"We have to make the elephant smaller. There are several ways to
compress files - one of the most common under Linux is `gzip`. Compress
the elephant with that program and look at it’s size again."

prompt {
if file(`"$ROOT/kitchen/elephant.gz"`) {
// depending on the locale, the decimal mark can be a comma or a dot
if output =~ `\d[.,]\dM` {
expect("gzip -f elephant; ls -sh")
break

}
}

}

"That sounds much better."

43

"Because that went so well, we’ve delivered a second elephant to the
hallway. Get it into the kitchen and compress it, this time with
`bzip2`. How large is the file this time?"

run(`seq 1 2000000 | tr -d ’\n’ | head -c $((1024*1024*10)) >
"$ROOT/elephant2"`)

prompt {
if file(`"$ROOT/kitchen/elephant2.bz2"`) {
if output =~ `\d[.,]\dM` {
expect("cp ../elephant2 .; bzip2 -f elephant2; ls -sh")
break

}
}

}

"The bzip2 compression algorithm takes more time, but creates smaller
files."

"The two compressed elephants now fit in the fridge comfortably!
(Hint: Using wildcards you can move both files at once!)"

prompt {
if file(`"$ROOT/kitchen/fridge/elephant.gz"`) &&

file(`"$ROOT/kitchen/fridge/elephant2.bz2"`) {
expect(`mv elephant* fridge`)
break

}
}

"These commands only compress single files. To compress a folder, you
have to combine it and its contents to a single file, you can do that
with `tar -c -f name_of_the_archive.tar folder`."

"`-c` stands for \"create\", `-f` for the name of the resulting file.
`tar` is short for \"tape archive\" originates from the good old times,
when magnetic tapes were used to store files."

"Please combine the fridge to `fridge.tar`."

prompt {
if file(`"$ROOT/kitchen/fridge.tar"`) {
expect("tar -c -f fridge.tar fridge")
break

}
}

"The compression commands replace the original file, but `tar` leaves
the source folder intact. Please delete the original fridge."

44

prompt {
if ! dir(`"$ROOT/kitchen/fridge"`) {
expect("rm -rf fridge")
break

}
}

"Good, and now compress the so-called \"tar ball\" with a compression
method of your choice."

prompt {
if file(`"$ROOT/kitchen/fridge.tar.gz"`) ||

file(`"$ROOT/kitchen/fridge.tar.bz2"`) {
expect("gzip fridge.tar")
break

}
}

"You can now pick up the compressed fridge with the compressed elephants,
put it in your pocket and take it with you. :-)"

"And eventually, we want to get the elephants back. Reverse your steps
and put both elephants back into the kitchen."

"Use the commands `gunzip` and `bunzip2`, as well as `tar` with the
arguments `-x -f name_of_the_archive.tar` (`-x` means \"extract\")."

prompt {
if file(`"$ROOT/kitchen/elephant"`) &&

file(`"$ROOT/kitchen/elephant2"`) {
expect("tar xzf fridge.tar.gz; gunzip fridge/elephant.gz;

bunzip2 fridge/elephant2.bz2")
break

}
}

}

"Enjoy your meal! When you’re ready to complete the lesson, say \"done\"!"

prompt {
if done {
expect("echo done")
break

}
}

45

Appendix B

List of Lessons Used in the
Evaluation
The following lessons were part of the preparatory course:

1. Introduction - first examples with cal

2. Looking and moving around - ls and cd

3. Helping users to help themselves - man

4. File system and paths

5. Creating and editing files - mkdir and
editors

6. History and tab completion

7. Java

8. Deleting files and directories - rmdir, rm

9. Copying, moving and linking files - cp,
mv, ln

10. Process management - ps

11. Aliases

12. Variables

13. Commandline editing

14. Wildcards

15. Quoting

16. Compressing files - tar, gzip, bzip2

17. Redirection and pipes

18. Looking for patterns - grep

19. Small useful commands

20. wget and curl

21. Typesetting with LATEX

22. Java, part 2

23. Comparing files - cmp, diff, patch

24. Searching - find, locate

25. Sorting

26. Shell scripts

27. Version control with Git

28. Working remotely with SSH

29. Automation with makefiles

46

List of Figures

1.1 The beginning of a Zork session. 8

2.1 An example IRB session. 12

3.1 Information flow between the Nut Shell’s components. Unlabeled
streams carry Unicode characters. 16

6.1 Answers to general questions. 34
6.2 Times the participants had to ask for help per day. 35
6.3 Points that the participants got in the test. 35
6.4 Answers to Nut Shell related questions. 36
6.5 Number of participants per day. Days 6 and 7 were a weekend, there

was no course on day 10. From bottom to top, the bar’s segments
represent first, second and third time slot. 36

47

Bibliography
[1] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd

Edition). Addison Wesley, Aug. 2006.
[2] Martin Fowler and Rebecca Parsons. Domain-Specific Languages. Addison-

Wesley Professional, 2010.
[3] Google. The Go Programming Language Specification. May 2013. url: http:

//golang.org/ref/spec (visited on 11/03/2013).
[4] William Sealy Gosset. “The Probable Error of a Mean”. In: Biometrika 6.1

(Mar. 1908). Originally published under the pseudonym “Student”, pp. 1–25.
[5] Infocom. Company History. url: http://www.infocom-if.org/company/

company.html (visited on 11/03/2013).
[6] ISO/IEC, ed. ISO/IEC 6429: Information technology – Control functions for

coded character sets. 3rd ed. Geneve: ISO/IEC, Dec. 1992.
[7] Vladimir Levenshtein. “Binary Codes Capable of Correcting Deletions and

Insertions and Reversals”. In: Soviet Physics Doklady 10.8 (1966), pp. 707–
710.

[8] Kenneth C. Louden. Programming Languages: Principles and Practice. Thom-
son Learning, Brooks/Cole, 2003.

[9] Shelley Powers et al. Unix Power Tools, Third Edition. 3rd. O’Reilly Media,
Inc., Oct. 2002.

[10] Chet Ramey. The GNU Readline Library. url: https://www.gnu.org/s/
readline/ (visited on 11/03/2013).

[11] The Unicode Consortium, ed. The Unicode Standard, Version 6.2 — Core
Specification. Mountain View, CA: The Unicode Consortium, Sept. 2012.

[12] _why. Try Ruby is Done, Makes HTML Now. Dec. 2005. url: https:
//web.archive.org/web/20051224030709/http://redhanded.hobix.
com/inspect/tryRubyTutorialIsDone.html (visited on 11/03/2013).

[13] Niklaus Wirth. “What can we do about the unnecessary diversity of notation
for syntactic definitions?” In: Commun. ACM 20.11 (Nov. 1977), pp. 822–823.

48

http://golang.org/ref/spec
http://golang.org/ref/spec
http://www.infocom-if.org/company/company.html
http://www.infocom-if.org/company/company.html
https://www.gnu.org/s/readline/
https://www.gnu.org/s/readline/
https://web.archive.org/web/20051224030709/http://redhanded.hobix.com/inspect/tryRubyTutorialIsDone.html
https://web.archive.org/web/20051224030709/http://redhanded.hobix.com/inspect/tryRubyTutorialIsDone.html
https://web.archive.org/web/20051224030709/http://redhanded.hobix.com/inspect/tryRubyTutorialIsDone.html

	Introduction
	Prior work
	Overview and organization
	Notation

	Preliminaries
	Command line interfaces
	Terminal
	Escape sequences and control characters
	Readline

	The CLI Abstraction Layer
	Targets
	High-level architecture
	Recognizing the prompt
	Recognizing the command
	Command line operations

	The nutsh Language
	Design goals
	Lexical elements
	Syntax and semantics
	Expressions
	Built-in functions
	Statements
	Top level structure

	Parsing and interpretation
	Automated testing

	Implementation
	Application and Evaluation
	Setting
	Style
	Survey
	Results
	Discussion

	Conclusions and Future Work
	Example nutsh Lesson
	List of Lessons Used in the Evaluation
	Bibliography

